Return to search

Hybrid DWT-DCT algorithm for image and video compression applications

Digital image and video in their raw form require an enormous amount of storage capacity. Considering the important role played by digital imaging and video, it is necessary to develop a system that produces high degree of compression while preserving critical image/video information. There are various transformation techniques used for data compression. Discrete Cosine Transform (DCT) and Discrete Wavelet Transform (DWT) are the most commonly used transformation. DCT has high energy compaction property and requires less computational resources. On the other hand, DWT is multiresolution transformation.<p>
In this work, we propose a hybrid DWT-DCT algorithm for image compression and reconstruction taking benefit from the advantages of both algorithms. The algorithm performs the Discrete Cosine Transform (DCT) on the Discrete Wavelet Transform (DWT) coefficients. Simulations have been conducted on several natural, benchmark, medical and endoscopic images. Several QCIF, high definition, and endoscopic videos have also been used to demonstrate the advantage of the proposed scheme.<p>
The simulation results show that the proposed hybrid DWT-DCT algorithm performs much better than the standalone JPEG-based DCT, DWT, and WHT algorithms in terms of peak signal to noise ratio (PSNR), as well as visual perception at higher compression ratio. The new scheme reduces false contouring and blocking artifacts significantly. The rate distortion analysis shows that for a fixed level of distortion, the number of bits required to transmit the hybrid coefficients would be less than those required for other schemes Furthermore, the proposed algorithm is also compared with the some existing hybrid algorithms. The comparison results show that, the proposed hybrid algorithm has better performance and reconstruction quality. The proposed scheme is intended to be used as the image/video compressor engine in imaging and video applications.

Identiferoai:union.ndltd.org:LACETR/oai:collectionscanada.gc.ca:SSU.etd-11302010-174709
Date23 February 2011
CreatorsShrestha, Suchitra
ContributorsOdeshi, Akindele G., Takaya, Kunio, Gokaraju, Ramakrishna, Wahid, Khan A.
PublisherUniversity of Saskatchewan
Source SetsLibrary and Archives Canada ETDs Repository / Centre d'archives des thèses électroniques de Bibliothèque et Archives Canada
LanguageEnglish
Detected LanguageEnglish
Typetext
Formatapplication/pdf
Sourcehttp://library.usask.ca/theses/available/etd-11302010-174709/
Rightsunrestricted, I hereby certify that, if appropriate, I have obtained and attached hereto a written permission statement from the owner(s) of each third party copyrighted matter to be included in my thesis, dissertation, or project report, allowing distribution as specified below. I certify that the version I submitted is the same as that approved by my advisory committee. I hereby grant to University of Saskatchewan or its agents the non-exclusive license to archive and make accessible, under the conditions specified below, my thesis, dissertation, or project report in whole or in part in all forms of media, now or hereafter known. I retain all other ownership rights to the copyright of the thesis, dissertation or project report. I also retain the right to use in future works (such as articles or books) all or part of this thesis, dissertation, or project report.

Page generated in 0.0028 seconds