Return to search

Adsorption et récupération du phosphate dans les eaux usées. Optimisation et réduction des coûts de régénération

De nouvelles normes plus strictes en matière d'émissions de nutriments dans les eaux voient le jour, notamment une norme de 0,1 mg P/L dans les Grands Lacs. De nouvelles méthodes de traitement doivent être développées pour atteindre des concentrations de phosphore aussi faibles à un prix raisonnable. L'adsorption à l'aide d'une résine hybride échangeuse d'anions imprégnée de nanoparticules de fer est une méthode prometteuse, car elle permet d'atteindre des concentrations faibles à un coût opérationnel raisonnable. Elle consiste en une première étape d'adsorption, puis une régénération, après quoi le cycle peut recommencer. La solution de régénération récupérée est très concentrée en phosphate et il devient plus facile par la suite de récupérer ce phosphate à l'aide de précipitation. Malgré des résultats prometteurs trouvés dans la littérature, très peu d'optimisation sur la régénération a été faite et cette étape est très peu documentée, malgré qu'elle consiste en la majorité des coûts opérationnels. Également, la plupart des expériences ont été effectuées avec des eaux usées synthétiques, qui n'ont pas les problèmes opérationnels tels que la formation de biofilm ou la présence d'ions compétiteurs et de contaminants. De plus, il y a peu d'information sur l'adsorption en présence d'ions compétiteurs et il devient difficile de prédire la capacité d'adsorption de la résine. Ce projet de maîtrise consiste à optimiser et documenter le procédé de régénération, tester l'efficacité de la résine avec des eaux usées réelles et quantifier l'effet des ions compétiteurs sur la capacité d'adsorption. Pour ce faire, des expériences en batch et en microcolonne ont été effectuées avec des eaux usées synthétiques pour modéliser la régénération et obtenir une solution de régénération efficace et peu coûteuse. Par la suite, des expériences en microcolonnes avec des eaux usées réelles ont été réalisées avec une saturation de la résine et ensuite avec une régénération à chaque 48 heures pour voir l'évolution du biofilm. Finalement, les isothermes de Langmuir et de Freundlich ont été modélisés pour les sulfates, chlorures et les phosphates à pH neutre. Les résultats des premières expériences révèlent que 15,89 volumes de lit d'une solution de 0,70% et 0,78% massique de NaOH et de NaCl avec un temps de résidence de 5 minutes permettent de minimiser les coûts de régénération. Cela a également montré que la concentration de base est le paramètre le plus important lors de la régénération, suivi par le nombre de volumes de lit, la concentration de sel et finalement le temps de résidence. Les expériences en microcolonne avec des eaux usées réelles justifient une fréquence de régénération de 48 heures pour prévenir la formation de biofilm, et que cette méthode est même économiquement avantageuse par rapport à choisir un temps entre les régénérations plus élevé. Finalement, l'isotherme de Freundlich est le mieux adapté pour décrire l'adsorption des sulfates et des phosphates, mais l'adsorption des chlorures est mieux décrite par l'isotherme de Langmuir. Les isothermes mixtes ne sont pas concluants en raison de mauvais résultats dus aux méthodes de mesure utilisées. / As new and stricter nutrients emission regulations are announced, such as a 0,1 mg P/L for the Great Lakes, it becomes imperative to develop and optimize new nutrient recovery methods in order to respect such strict laws. A method with promising results is the adsorption with hybrid anion exchange resins impregnated with iron oxide nanoparticles. This technology consists in adsorbing phosphate and then recovering it by regenerating the resin. The recovered phosphate solution obtained after the resin regeneration is highly concentrated, making it easy to precipitate the phosphate. Despite the promising results found in literature, very little optimization has been pursued regarding the regeneration, even though it constitutes one of the most important operational costs. In addition, most of the research has been done with synthetic wastewater, which does not allow studying all the operational problems that one can encounter with real wastewater such as biofilm formation and the presence of multiple competitive ions and other contaminants. Finally, there is very little information on the adsorption of the competitive ions in the literature, so it becomes nearly impossible to predict the adsorption capacity of the resin for real cases. Therefore, this master project focusses on optimizing and documenting the regeneration process, executing experiments with real wastewater to see if the resin is still efficient and finally developing isotherms with competitive ions in order to predict the adsorption capacity of the resin in real conditions. In order to do so, batch and micro-column experiments were done with synthetic wastewater to model and optimize the regeneration steps and reduce its costs. Then, experiments with real wastewater were performed using two different regeneration methods. The first method was to regenerate the column after a complete saturation, and the second method was with a 48 h interval between regenerations. Finally, Freundlich and Langmuir isotherms were modelled for sulfate, chloride and phosphate at neutral pH. Results from the first set of experiments showed that sulfates and chlorides have the same effect on the regeneration performance. A cost-effective solution for the regeneration was established, which involves the use of 15,89 bed volumes of a 0,70% and 0,78% weight solution of NaOH and NaCl respectively with a residence time of 5 minutes. They also revealed that the base concentration is the most important parameter for the regeneration, followed by the number of bed volumes, the salt concentration and finally the residence time. Experiments with real wastewater showed that a 48 h interval between regeneration cycles was the most efficient one to regenerate and remove the biofilm formation. Finally, the Freundlich isotherm is the most adapted to describe sulfate and phosphate adsorption, but the Langmuir isotherm is more adapted for chloride adsorption. Mixed ions isotherms were not concluding due to problems with measurements.

Identiferoai:union.ndltd.org:LAVAL/oai:corpus.ulaval.ca:20.500.11794/111704
Date05 March 2023
CreatorsDesrosiers, David-Alexandre
ContributorsVaneeckhaute, Céline, Vanrolleghem, Peter A.
Source SetsUniversité Laval
LanguageFrench
Detected LanguageFrench
TypeCOAR1_1::Texte::Thèse::Mémoire de maîtrise
Format1 ressource en ligne (xi, 82 pages), application/pdf
Rightshttp://purl.org/coar/access_right/c_abf2

Page generated in 0.0023 seconds