La dynamique des ailes battantes observée dans le règne animal suscite l'attention de plusieurs chercheurs afin de mieux comprendre et exploiter ce phénomène de propulsion et de sustentation. Il a notamment été démontré que le phénomène de «clap-and-fling», où deux ailes entrent à grande proximité l'une avec l'autre pendant leur mouvement, génère un haut niveau de force de portance ou de propulsion. Ce mécanisme est particulièrement efficace à de petites échelles dans la nature, ce qui rend son application attrayante au niveau de la miniaturisation d'engins volants comme les drones. En effet, certains insectes et petits oiseaux battent des ailes pour voler, ce qui implique un mécanisme biologique sous-jacent qui est associé à des performances aérodynamiques efficaces qui ont été adoptées à travers la sélection naturelle. Les résultats obtenus à travers les simulations numériques effectuées démontrent bel et bien l'utilité du mécanisme de «clap-and-fling». D'un point de vue cinématique, le mouvement de l'aile oscillante peut être résumé en deux dimensions à deux sous-mouvements sinusoïdaux, soit une oscillation verticale (pilonnement) et une rotation de l'aile autour de son point de pivot (tangage). En effet, la campagne paramétrique effectuée selon ces mouvements confirme que l'interaction entre deux ailes battantes qui débattent en grande proximité permet de générer un haut niveau de propulsion avec une augmentation de l'efficacité marquée par rapport à l'utilisation d'une seule aile. Une campagne numérique additionnelle qui se base sur la meilleure configuration utilisant deux ailes battantes, introduit un nouveau mouvement sinusoïdal, soit la déviation. Ce dernier est une oscillation additionnelle horizontale qui a notament pour but d'augmenter l'efficacité du système en amplifiant les effets instationnaires du mécanisme de «clap-and-fling». Ces deux campagnes numériques basées sur des simulations numériques simplifiées en deux dimensions ont permis de mieux comprendre les subtilités du phénomène et d'en améliorer les performances. Les effets tridimensionnels ont été explorés numériquement à partir de la meilleure configuration rapportée par l'étude 2D. Les résultats obtenus de cette étude démontrent les effets 3D présents pour un tel système qui affectent nécessairement ses performances et permettent ainsi de proposer les lignes directrices pour la conception éventuelle d'un prototype de micro-drone utilisant le mécanisme de «clap-and-fling». / The flapping wing dynamics observed in the animal kingdom are attracting the attention of many researchers to better understand and exploit this propulsion and lift phenomenon. In particular, it has been shown that the phenomenon of clap-and-fling, where two wings enter close proximity to each other during their movement, generates a high level of lift or propulsive force. This mechanism is particularly effective on small scales in nature, making its application attractive for the miniaturization of flying machines such as drones. Indeed, some insects and small birds flap their wings to fly, implying an underlying biological mechanism associated with efficient aerodynamic performances that has been adopted through natural selection. The results obtained from the numerical simulations carried out clearly demonstrate the usefulness of the clap-and-fling mechanism. From a kinematic point of view, the motion of the oscillating wing can be summarized in two dimensions as two sinusoidal submovements, i.e. a vertical oscillation (heave) and a rotation of the wing around its pivot point (pitch). In fact, the parametric campaign performed according to these motions confirms that the interaction between two flapping wings oscillating in close proximity generates a high level of thrust with a marked increase in efficiency compared with the use of a single wing. An additional numerical campaign, based on the best configuration using two flapping wings, introduces a new sinusoidal motion, namely deviation. The latter is an additional horizontal oscillation designed to increase the system's efficiency by amplifying the unsteady effects of the clap-and-fling mechanism. These two numerical campaigns, based on simplified two-dimensional numerical simulations, allow a better understanding of the subtleties of the phenomenon and improve its performance. The three-dimensional effects were explored numerically based on the best configuration reported by the 2D study. The results obtained from this study demonstrate the 3D effects present for such a system, which necessarily affect its performances, and thus enable the proposal of guidelines for the eventual design of a micro-drone prototype using the clap-and-fling mechanism.
Identifer | oai:union.ndltd.org:LAVAL/oai:corpus.ulaval.ca:20.500.11794/150923 |
Date | 23 September 2024 |
Creators | Papillon, Antoine |
Contributors | Olivier, Mathieu |
Source Sets | Université Laval |
Language | English |
Detected Language | French |
Type | COAR1_1::Texte::Thèse::Mémoire de maîtrise |
Format | 1 ressource en ligne (xv, 103 pages), application/pdf |
Rights | http://purl.org/coar/access_right/c_abf2 |
Page generated in 0.0015 seconds