La présence de réponses manquantes pour certains items d’une échelle de mesure est un phénomène que tout chercheur est susceptible de rencontrer au cours de ses travaux. Bien que les biais que peut causer un traitement inadéquat de cette non-réponse soient connus depuis près de 30 ans (Rubin, 1976), les connaissances quant à l’efficacité des diverses méthodes de traitement des valeurs manquantes sont encore très restreintes. La présente étude vise à faire évoluer les connaissances et les pratiques concernant le traitement des valeurs manquantes dans le contexte d’utilisation d’échelles de type Likert. Le problème fondamental que posent les valeurs manquantes est qu’il est impossible de ne pas en tenir compte lors de l’application d’une méthode d’analyse statistique. La majorité de ces méthodes ayant été développées pour traiter des matrices de données complètes. Les modèles de mesure utilisés dans le traitement des données issues d’échelles de type Likert n’échappent pas à cette réalité. Deux modèles de mesure sont étudiés plus en profondeur dans ce projet soit, le modèle classique et le modèle gradué de Samejima. La recherche entreprise avait comme objectif d’évaluer l’efficacité de cinq méthodes de traitement des valeurs manquantes, dont la méthode d’imputation multiple. De plus, il était visé d’évaluer l’impact du nombre de sujets, du nombre d’items et de la proportion des valeurs manquantes sur l’efficacité des méthodes. Les résultats issus de cette recherche semblent suggérer que la méthode d’imputation multiple présente une efficacité supérieure aux autres méthodes bien que, tout dépendant du modèle de mesure considéré, d’autres méthodes plus simples semblent aussi efficaces. Il importe de noter en conclusion qu’aucune méthode de traitement ne peut éliminer complètement les biais causés par les valeurs manquantes et qu’à ce sujet, il serait préférable de prévenir plutôt que de guérir. / The presence of missing answers for some items of a scale of measurement is a phenomenon which any researcher is suitable to meet during his work. Although bias that an inadequate treatment of this non-response can cause are known since nearly 30 years (Rubin, 1976), knowledge of the effectiveness of the various missing values treatment is still very restricted. The present study aims at making knowledge and practices concerning the treatment of the missing values evolve in the context of Likert type scale. The fundamental problem that missing values pose is that it is impossible not to take it into account at the time of the application of a method of statistical analysis, the majority of these methods having been developed to treat matrices of complete data. The models of measurement used in the analysis of Likert type scale data do not escape from this reality. Two models of measurement are studied more in-depth in this project, the classical test model and the Samejima graded model. The main objective of the research undertaken is to evaluate the effectiveness of five missing values treatment, including the multiple imputation method. Moreover, it was aimed to evaluate the impact of the number of subjects, the number of items and the proportion of the missing values on the effectiveness of the methods. The results of this research seem to suggest that the effectiveness of multiple imputation is higher than the other methods, although depending on the model of measurement considered, other simpler methods seem also effective. In conclusion, it is important to note that because no method of treatment can eliminate completely the bias caused by the presence of missing values, it would be preferable to prevent rather than to cure.
Identifer | oai:union.ndltd.org:LAVAL/oai:corpus.ulaval.ca:20.500.11794/18669 |
Date | 12 April 2018 |
Creators | Rousseau, Michel |
Contributors | Bertrand, Richard |
Source Sets | Université Laval |
Language | French |
Detected Language | French |
Type | thèse de doctorat, COAR1_1::Texte::Thèse::Thèse de doctorat |
Format | 266 p., application/pdf |
Rights | http://purl.org/coar/access_right/c_abf2 |
Page generated in 0.0023 seconds