Return to search

Thérapie génique de la dystrophie musculaire de duchenne : utilisation de transgènes de la dystrophine chez le modèle canin

La dystrophie musculaire de Duchenne (DMD) est une maladie génétique qui touche environ 1 garçon sur 3500. Cette pathologie liée au chromosome X est caractérisée par l’absence de dystrophine au niveau des muscles. Ce manque de dystrophine fragilise le sarcolemme des fibres musculaires menant à une faiblesse progressive du muscle. Les patients décèdent généralement dans la vingtaine et il n’y a pas à l’heure actuelle de traitement curatif pour cette maladie. Une approche pour restaurer la dystrophine chez le patient DMD est d’introduire un transgène codant pour cette protéine dans ses muscles. Cela peut être fait par thérapie génique et particulièrement par la thérapie génique ex vivo et l’électroporation. Bien que ces deux techniques aient fait leurs preuves dans différents modèles animaux, elles n’ont jamais été utilisées chez le chien dystrophique alors que c’est le modèle le plus proche de la DMD en termes de phénotype. Deux versions de la dystrophine de chien ont été utilisées dans nos expériences : une version pleine longueur et une autre plus petite afin qu’elle puisse être incluse dans un lentivirus. La transplantation de myoblastes génétiquement modifiés par ce lentivirus (thérapie génique ex vivo) nous a permis d’obtenir l’expression de micro-dystrophine dans les muscles des souris immunodéficientes greffés. Néanmoins, l’autotransplantation de myoblastes de chien génétiquement modifiés a mené à un rejet spécifique des cellules greffées. L’électroporation, c.-à-d. l’injection de plasmide suivie d’un choc électrique, a également été utilisée pour introduire ce transgène ainsi que celui de la dystrophine pleine longueur dans des muscles de souris et de chien. Ces deux transgènes furent retrouvés avec succès chez la souris et le chien. Cependant, des infiltrations de cellules de l’immunité spécifique furent retrouvées au niveau des fibres exprimant le transgène chez le chien (pour l’utilisation de micro-dystrophine) et chez le chien dystrophique (pour la dystrophine pleine longueur). Bien que les résultats obtenus avec la thérapie génique ex vivo et l’électroporation soient très bons chez la souris, ceux obtenus chez le chien sont plus modérés. Il reste donc encore beaucoup d’améliorations à apporter à ces deux méthodes avant qu’elles puissent être utilisées comme approche thérapeutique dans le cadre de la DMD. / Duchenne muscular dystrophy is a genetic disease affecting 1 out of every 3500 boys. This X-linked pathology is characterised by the absence of dystrophin in myofibers. This lack of dystrophin leads to a progressive muscular degeneration. DMD patients die between 17 and 30 years of age. There are currently no curative treatments for this disease. An approach to restore dystrophin in DMD patients is to introduce a transgene coding for this protein into their muscles. This can be done by gene therapy, particularly by ex vivo gene therapy or by electroporation. Even if these 2 techniques have shown good results in mouse models, they have not been used in the dystrophic dog. Two different isoforms of the dystrophin were used in our experiments: the full length dog dystrophin and a shorter version, the dog micro-dystrophin, introduced in a lentivirus backbone. Myoblasts were transduced with this lentivirus and transplanted successfully in immunodeficient mouse. However, the autotransplantation of genetically modified dog myoblasts led to a specific rejection of the grafted cells. A non viral gene therapy (electroporation, i.e., injection of a plasmid followed by a sequence of electric pulses) was used to introduce these two different isoforms of dystrophin in mouse and (normal and dystrophic) dog muscles. The two transgenes were electroporated with success in these muscles. However, a specific immune response was found in some myofibers expressing the transgene in the normal dog (using micro-dystrophin) and in the dystrophic dog (using full length dystrophin). Although the results obtained with the ex vivo gene therapy and with the electroporation were relatively effective in the mouse model, those obtained with the dog model were much lower. Thus, lots of improvements remain to be made in order to consider these two techniques as potential approaches to restore dystrophin in a large animal model and eventually in DMD patients.

Identiferoai:union.ndltd.org:LAVAL/oai:corpus.ulaval.ca:20.500.11794/21607
Date16 April 2018
CreatorsPichavant, Christophe
ContributorsTremblay, Jacques-P.
Source SetsUniversité Laval
LanguageFrench
Detected LanguageFrench
Typethèse de doctorat, COAR1_1::Texte::Thèse::Thèse de doctorat
Format176 p., application/pdf
Rightshttp://purl.org/coar/access_right/c_abf2

Page generated in 0.0057 seconds