Return to search

Modélisation et commande d'un robot volant robuste

Les Tryphons, tout comme leurs prédécesseurs du projet [ VOILES / The Tryphons and their predecessors from the [ VOILES | SAILS ] project are large cubic indoor blimps used autonomously or in remote control mode. Each of these aerobot is equipped with a main micro-computer on-board, a variety of sensors and a wireless communication interface. From a mechanical engineering point of view, the unique shape of these robots and the constraint of their original application field makes them the subject of a novel development path in the study of the dynamics and the flight control. Among the issues that this study had to deal with the focus was put on circuits, wires and connectors reliability, batteries manipulation and fixation while hovering above people, complex manual equilibration of the yaw and pitch moments, complex calibration of the controller's parameters before each performance. The research performed during this Master's degree focused on three main objectives:
1. To develop a numerical dynamic model of the robots in order to determine the critical aspects of the design and how to enhance their robustness.
2. To analyze the electromechanical components of the robots and to modify their design to allow long-lasting and repetitive public performances.
3. To select the appropriate optimal method of positioning in an indoor theater environment for robustness and maximum autonomy.
This study demonstrates that the mechanical robustness of these aerobots can be achieved by a new design of the circuits and of the wiring, which integrates them to the structure, and by new custom battery fixations. For the control robustness, a modular approach led to multiple user-selectable controllers. The user can choose a controller and adapt its parameters to find the best fit for each specific situation. A new controller was also developed, which ensures a complete control of the six degrees of freedom by dead reckoning. This was achieved through the use of accelerometers, 3 axis magnetometer, an altimeter and a camera. / Les Tryphons, tout comme leurs prédécesseurs du projet [ VOILES | SAILS ], sont des aérostats intérieurs de forme cubique, autonomes ou pilotés. Ils sont tous équipés d'un micro-ordinateur de bord, de différents capteurs et d'une interface de communication sans fil. D'un point de vue mécanique, la géométrie unique et le domaine d'application original des Tryphons en font un sujet de recherche nouveau pour l'étude de la dynamique du vol et de son contrôle. Parmi les problèmes concernés par cette étude, l'emphase a été portée sur la fiabilité des circuits, câbles et connecteurs, la manipulation et la fixation des batteries pour des vols au-dessus d'une foule, l'équilibrage manuel complexe des moments d'assiette longitudinale et de gîte, la calibration complexe des nombreux paramètres du contrôleur à chaque performance. Dans le cadre de cette maîtrise les objectifs de recherche et le contenu de cette thèse couvrent :
1. Le développement d'un modèle dynamique virtuel des robots permettant de cerner les aspects critiques de la fiabilité et de la robustesse de leurs systèmes. Ce modèle est d'abord développé de manière théorique, en se basant sur la littérature pertinente, principalement du domaine des aérostats extérieurs. Ce modèle, comprenant une approximation des effets aérodynamiques, est optimisé au moyen de tests sur le robot. Grâce au modèle optimisé, différents facteurs, comme le positionnement d'équipement en différents endroits sur la structure et le rapprochement du centre de masse et du centroïde, sont étudiés numériquement.
2. L'analyse de la robustesse électro-mécanique des robots pour des interactions prolongées et répétitives. Cette étude se base principalement sur l'expertise empirique des divers intervenants ayant utilisé ces robots dans les dernières performances publiques. Les éléments critiques du design électro-mécanique sont identifiés puis leur conception est revue afin d'en augmenter la robustesse.
3. L'analyse de la méthode de positionnement absolue en salle de spectacle la plus robuste qui conserve un maximum d'autonomie du robot. En se référant à la littérature pertinente, et tout en considérant le temps limité de cette recherche, le système de positionnement complètement embarqué le plus prometteur a été sélectionné et développé. Les résultats de tests sur un partie du système sont présentés.
Il est démontré dans cette étude que la robustesse mécanique, dans le contexte de ce projet, est atteinte en concevant des circuits et leur filage solidaires à la structure et des supports de batteries sur mesure. La robustesse au niveau du contrôle est quant à elle améliorée en permettant aisément à l'usager de passer d'un mode de contrôle à un autre afin de rapidement en ajuster les paramètres et de trouver le mode le mieux adapté à chaque situation. En terme de contrôle une nouvelle approche a permis de positionner les éléments nécessaires à un contrôle complet des six degrés de liberté en navigation à l'estime. Un ensemble de capteurs comprenant un accéléromètre, un magnétomètre 3 axes, un altimètre et une caméra permet d'obtenir suffisamment de données pour accomplir cette tâche.

Identiferoai:union.ndltd.org:LAVAL/oai:corpus.ulaval.ca:20.500.11794/23162
Date18 April 2018
CreatorsSt-Onge, David
ContributorsGosselin, Clément
Source SetsUniversité Laval
LanguageFrench
Detected LanguageFrench
Typemémoire de maîtrise, COAR1_1::Texte::Thèse::Mémoire de maîtrise
Formatxvi, 114 p., application/pdf
Rightshttp://purl.org/coar/access_right/c_abf2

Page generated in 0.0019 seconds