Return to search

Un modèle numérique pour structures en béton fibré à ultra-hautes performances : prise en compte de l'orientation des fibres par une approche d'endommagement micromécanique

Tableau d’honneur de la Faculté des études supérieures et postdoctorales, 2012-2013. / Le comportement des bétons fibrés à ultra-hautes performances (BFUP) dépend fortement de l’orientation des fibres vis-à-vis de la direction des sollicitations. L’orientation des fibres étant principalement due à la mise en oeuvre de la structure, la ductilité d’un ouvrage s’en retrouve fortement dépendant. Dans ce mémoire de maîtrise, un modèle numérique est développé pour capturer l’effet de l’orientation des fibres via leurs mécanismes d’extraction. Il s’agit d’un modèle d’endommagement micromécanique, utilisé dans le cadre de la mécanique de la rupture linéaire élastique permettant de modéliser la propagation des fissures, la dissipation d’énergie et donc la ductilité de la structure. Cette approche permet également de rendre le modèle indépendant de la finesse du maillage et de modéliser l’effet d’échelle. Dans ce travail, les BFUP sont composés de fibres courtes en acier dont le pourcentage volumique est inférieur à 3%. La résistance en compression du BFUP est si grande que le matériau est admis être purement linéaire élastique en compression. Le modèle est implanté dans le logiciel Code_Aster pour calibration, validation et application sur des essais de traction et sur des essais de flexion quatre points : le modèle développé reproduit très bien ces résultats expérimentaux. / The behavior of ultra-high performance fiber reinforced concrete (UHPFRC) strongly depends on fibers’ orientations relatively to the direction of stresses. Fibers’ orientations are mostly due to concrete casting of the structure and therefore the ductility of a structure is highly dependent of those orientations. In this MSc thesis, a numerical model is developed to capture the effect of fiber orientation considering the fiber pull-out mechanism. A micromechanical damage model based on linear elastic fracture mechanics to model crack propagation, energy dissipation and thus structure’s ductility. This approach also corrects spurious mesh sensitivity and captures size effect. In this work, UHPFRC are made of short steel fibers with fiber content inferior to 3%. The compressive strength of UHPFRC is so important that the material is assumed to be purely linear elastic in compression. The model is implemented in Code_Aster software for calibration, validation and application on tensile tests and four-point bending tests : the developed model can reproduce these experimental results.

Identiferoai:union.ndltd.org:LAVAL/oai:corpus.ulaval.ca:20.500.11794/23883
Date19 April 2018
CreatorsGuenet, Thomas
ContributorsBastien, Josée, Sorelli, Luca
Source SetsUniversité Laval
LanguageFrench
Detected LanguageFrench
Typemémoire de maîtrise, COAR1_1::Texte::Thèse::Mémoire de maîtrise
Format154 p., application/pdf
Rightshttp://purl.org/coar/access_right/c_abf2

Page generated in 0.0021 seconds