Towards development of fuzzy spatial datacubes : fundamental concepts with example for multidimensional coastal erosion risk assessment and representation

Les systèmes actuels de base de données géodécisionnels (GeoBI) ne tiennent généralement pas compte de l'incertitude liée à l'imprécision et le flou des objets; ils supposent que les objets ont une sémantique, une géométrie et une temporalité bien définies et précises. Un exemple de cela est la représentation des zones à risque par des polygones avec des limites bien définies. Ces polygones sont créés en utilisant des agrégations d'un ensemble d'unités spatiales définies sur soit des intérêts des organismes responsables ou les divisions de recensement national. Malgré la variation spatio-temporelle des multiples critères impliqués dans l’analyse du risque, chaque polygone a une valeur unique de risque attribué de façon homogène sur l'étendue du territoire. En réalité, la valeur du risque change progressivement d'un polygone à l'autre. Le passage d'une zone à l'autre n'est donc pas bien représenté avec les modèles d’objets bien définis (crisp). Cette thèse propose des concepts fondamentaux pour le développement d'une approche combinant le paradigme GeoBI et le concept flou de considérer la présence de l’incertitude spatiale dans la représentation des zones à risque. En fin de compte, nous supposons cela devrait améliorer l’analyse du risque. Pour ce faire, un cadre conceptuel est développé pour créer un model conceptuel d’une base de donnée multidimensionnelle avec une application pour l’analyse du risque d’érosion côtier. Ensuite, une approche de la représentation des risques fondée sur la logique floue est développée pour traiter l'incertitude spatiale inhérente liée à l'imprécision et le flou des objets. Pour cela, les fonctions d'appartenance floues sont définies en basant sur l’indice de vulnérabilité qui est un composant important du risque. Au lieu de déterminer les limites bien définies entre les zones à risque, l'approche proposée permet une transition en douceur d'une zone à une autre. Les valeurs d'appartenance de plusieurs indicateurs sont ensuite agrégées basées sur la formule des risques et les règles SI-ALORS de la logique floue pour représenter les zones à risque. Ensuite, les éléments clés d'un cube de données spatiales floues sont formalisés en combinant la théorie des ensembles flous et le paradigme de GeoBI. En plus, certains opérateurs d'agrégation spatiale floue sont présentés. En résumé, la principale contribution de cette thèse se réfère de la combinaison de la théorie des ensembles flous et le paradigme de GeoBI. Cela permet l’extraction de connaissances plus compréhensibles et appropriées avec le raisonnement humain à partir de données spatiales et non-spatiales. Pour ce faire, un cadre conceptuel a été proposé sur la base de paradigme GéoBI afin de développer un cube de données spatiale floue dans le system de Spatial Online Analytical Processing (SOLAP) pour évaluer le risque de l'érosion côtière. Cela nécessite d'abord d'élaborer un cadre pour concevoir le modèle conceptuel basé sur les paramètres de risque, d'autre part, de mettre en œuvre l’objet spatial flou dans une base de données spatiales multidimensionnelle, puis l'agrégation des objets spatiaux flous pour envisager à la représentation multi-échelle des zones à risque. Pour valider l'approche proposée, elle est appliquée à la région Perce (Est du Québec, Canada) comme une étude de cas. / Current Geospatial Business Intelligence (GeoBI) systems typically do not take into account the uncertainty related to vagueness and fuzziness of objects; they assume that the objects have well-defined and exact semantics, geometry, and temporality. Representation of fuzzy zones by polygons with well-defined boundaries is an example of such approximation. This thesis uses an application in Coastal Erosion Risk Analysis (CERA) to illustrate the problems. CERA polygons are created using aggregations of a set of spatial units defined by either the stakeholders’ interests or national census divisions. Despite spatiotemporal variation of the multiple criteria involved in estimating the extent of coastal erosion risk, each polygon typically has a unique value of risk attributed homogeneously across its spatial extent. In reality, risk value changes gradually within polygons and when going from one polygon to another. Therefore, the transition from one zone to another is not properly represented with crisp object models. The main objective of the present thesis is to develop a new approach combining GeoBI paradigm and fuzzy concept to consider the presence of the spatial uncertainty in the representation of risk zones. Ultimately, we assume this should improve coastal erosion risk assessment. To do so, a comprehensive GeoBI-based conceptual framework is developed with an application for Coastal Erosion Risk Assessment (CERA). Then, a fuzzy-based risk representation approach is developed to handle the inherent spatial uncertainty related to vagueness and fuzziness of objects. Fuzzy membership functions are defined by an expert-based vulnerability index. Instead of determining well-defined boundaries between risk zones, the proposed approach permits a smooth transition from one zone to another. The membership values of multiple indicators (e.g. slop and elevation of region under study, infrastructures, houses, hydrology network and so on) are then aggregated based on risk formula and Fuzzy IF-THEN rules to represent risk zones. Also, the key elements of a fuzzy spatial datacube are formally defined by combining fuzzy set theory and GeoBI paradigm. In this regard, some operators of fuzzy spatial aggregation are also formally defined. The main contribution of this study is combining fuzzy set theory and GeoBI. This makes spatial knowledge discovery more understandable with human reasoning and perception. Hence, an analytical conceptual framework was proposed based on GeoBI paradigm to develop a fuzzy spatial datacube within Spatial Online Analytical Processing (SOLAP) to assess coastal erosion risk. This necessitates developing a framework to design a conceptual model based on risk parameters, implementing fuzzy spatial objects in a spatial multi-dimensional database, and aggregating fuzzy spatial objects to deal with multi-scale representation of risk zones. To validate the proposed approach, it is applied to Perce region (Eastern Quebec, Canada) as a case study.

Identiferoai:union.ndltd.org:LAVAL/oai:corpus.ulaval.ca:20.500.11794/25589
Date20 April 2018
CreatorsJadidi Mardkheh, Amaneh
ContributorsMostafavi, Mir Abolfazl, Bédard, Yvan
Source SetsUniversité Laval
LanguageEnglish
Detected LanguageFrench
Typethèse de doctorat, COAR1_1::Texte::Thèse::Thèse de doctorat
Format1 ressource en ligne (xxi, 176 pages), application/pdf
Rightshttp://purl.org/coar/access_right/c_abf2

Page generated in 0.0024 seconds