Return to search

Généralisations de la théorie PAC-bayésienne pour l'apprentissage inductif, l'apprentissage transductif et l'adaptation de domaine

Tableau d’honneur de la Faculté des études supérieures et postdoctorales, 2015-2016 / En apprentissage automatique, l’approche PAC-bayésienne permet d’obtenir des garanties statistiques sur le risque de votes de majorité pondérés de plusieurs classificateurs (nommés votants). La théorie PAC-bayésienne «classique», initiée par McAllester (1999), étudie le cadre d’apprentissage inductif, sous l’hypothèse que les exemples d’apprentissage sont générés de manière indépendante et qu’ils sont identiquement distribués (i.i.d.) selon une distribution de probabilité inconnue mais fixe. Les contributions de la thèse se divisent en deux parties. Nous présentons d’abord une analyse des votes de majorité, fondée sur l’étude de la marge comme variable aléatoire. Il en découle une conceptualisation originale de la théorie PACbayésienne. Notre approche, très générale, permet de retrouver plusieurs résultats existants pour le cadre d’apprentissage inductif, ainsi que de les relier entre eux. Nous mettons notamment en lumière l’importance de la notion d’espérance de désaccord entre les votants. Bâtissant sur une compréhension approfondie de la théorie PAC-bayésienne, acquise dans le cadre inductif, nous l’étendons ensuite à deux autres cadres d’apprentissage. D’une part, nous étudions le cadre d’apprentissage transductif, dans lequel les descriptions des exemples à classifier sont connues de l’algorithme d’apprentissage. Dans ce contexte, nous formulons des bornes sur le risque du vote de majorité qui améliorent celles de la littérature. D’autre part, nous étudions le cadre de l’adaptation de domaine, dans lequel la distribution génératrice des exemples étiquetés de l’échantillon d’entraînement diffère de la distribution générative des exemples sur lesquels sera employé le classificateur. Grâce à une analyse théorique – qui se révèle être la première approche PAC-bayésienne de ce cadre d’apprentissage –, nous concevons un algorithme d’apprentissage automatique dédié à l’adaptation de domaine. Nos expérimentations empiriques montrent que notre algorithme est compétitif avec l’état de l’art. / In machine learning, the PAC-Bayesian approach provides statistical guarantees on the risk of a weighted majority vote of many classifiers (named voters). The “classical” PAC-Bayesian theory, initiated by McAllester (1999), studies the inductive learning framework under the assumption that the learning examples are independently generated and are identically distributed (i.i.d.) according to an unknown but fixed probability distribution. The thesis contributions are divided in two major parts. First, we present an analysis of majority votes based on the study of the margin as a random variable. It follows a new conceptualization of the PAC-Bayesian theory. Our very general approach allows us to recover several existing results for the inductive PAC-Bayesian framework, and link them in a whole. Among other things, we highlight the notion of expected disagreement between the voters. Building upon an improved understanding of the PAC-Bayesian theory, gained by studying the inductive framework, we then extend it to two other learning frameworks. On the one hand, we study the transductive framework, where the learning algorithm knows the description of the examples to be classified. In this context, we state risk bounds on majority votes that improve those from the current literature. On the other hand, we study the domain adaptation framework, where the generating distribution of the labelled learning examples differs from the generating distribution of the examples to be classified. Our theoretical analysis is the first PAC-Bayesian approach of this learning framework, and allows us to conceive a new machine learning algorithm for domain adaptation. Our empirical experiments show that our algorithm is competitive with other state-of-the-art algorithms.

Identiferoai:union.ndltd.org:LAVAL/oai:corpus.ulaval.ca:20.500.11794/26130
Date23 April 2018
CreatorsGermain, Pascal
ContributorsLaviolette, François, Marchand, Mario
Source SetsUniversité Laval
LanguageFrench
Detected LanguageFrench
Typethèse de doctorat, COAR1_1::Texte::Thèse::Thèse de doctorat
Format1 ressource en ligne (xx, 236 pages), application/pdf
Rightshttp://purl.org/coar/access_right/c_abf2

Page generated in 0.0028 seconds