Return to search

Réalisation d'antennes hybrides de type BIE à base de résonateurs diélectriques à 60 GHz

Un système de communication fiable dans un environnement confiné, en particulier les mines souterraines, peut largement accroître la sécurité et la production. Actuellement, les réseaux de communication sans fil en milieu confiné offrent un débit maximal de 1 Gbits/s. Toutefois, la disponibilité de systèmes offrants des débits de l'ordre de 2 à 10 Gbits/s deviendra dans un proche avenir, une nécessité compte-tenu de l'introduction des systèmes 4G avancés et les technologies 5G qui pointent à l’horizon. L’utilisation de fréquences élevées, particulièrement en bandes millimétriques, telle que la bande ISM à 60 GHz offrant 7 GHz de bande passante, est l'une des voies les plus directes et les plus simples pour atteindre un débit souhaitable entre 2-10 Gbits/s. Il est bien connu toutefois que les signaux à 60 GHz se propagent de façon erratique dans les endroits où se trouvent de nombreux obstacles, les composantes réfléchies et diffractées étant considérablement atténuées. Le type de polarisation de l'antenne d'émission et de réception est l'un des critères affectant la qualité de réception du signal, en plus des pertes additionnelles liées à l'absorption par l'oxygène dans l’air et les pertes de propagation associées au parcours. Pour palier partiellement à ces problèmes, les antennes doivent être directionnelles à polarisation circulaire avec un gain élevé et une large bande passante. Ce travail présente une nouvelle approche pour améliorer les propriétés de rayonnement des antennes BIE (Bande Interdite Électromagnétique) en utilisant une combinaison entre les antennes à résonateurs diélectriques DRA (Dielectric Resonator Antenna) et les superstrats métamatériaux pour profiter des avantages individuels de chacun d’eux. L’objectif est de concevoir, étudier analytiquement, numériquement et expérimentalement de nouvelles structures performantes de type BIE et de caractériser leur potentiel en termes de la bande passante, du gain, de l’efficacité et de la polarisation pour un fonctionnement optimal autour de 60 GHz, conformément aux exigences d’un canal minier. Initialement, une antenne émettrice originale BIE fonctionnant à 60 GHz, caractérisée par un gain élevé et une polarisation circulaire à large bande est proposée. Cette antenne est constituée d’un résonateur diélectrique en forme de croix (XDRA) et elle est utilisée comme une source d’alimentation pour générer la polarisation circulaire avec une couche supérieure de type FSS (surface sélective en fréquence) pour améliorer le gain et la bande passante de la source d’excitation. Ensuite, une nouvelle approche analytique pour calculer les propriétés de rayonnement des antennes BIE est développée. Pour satisfaire aux exigences des ondes millimétriques en termes de gain, on présente une autre antenne hybride basée sur la combinaison de la théorie des réseaux et la notion des antennes BIE monosource. Cette nouvelle structure multisources permet d’atteindre une amélioration de gain de 3.5 dB par rapport à l’antenne monosource mais, la bande passante de ces structures reste encore incompatible avec de nombreuses applications à 60 GHz. Pour remédier au problème de la bande passante limitée, une nouvelle approche hybride est subséquemment introduite. Cette technique est basée sur l’excitation de la structure BIE par des antennes à résonateur diélectrique multi segments et, ensuite, le concept du superstrat métamatériau est introduit pour améliorer le produit gain- bande passante. Finalement, pour rendre la communication plus flexible soit que les antennes peuvent être utilisées simultanément en tant qu’émetteur et récepteur, une structure BIE unique à polarisation configurable est conçue. La structure est composée d'une excitation sous la forme d'une antenne à résonateur diélectrique pyramidal DRA recouvert avec un superstrat FSS. Ce dispositif est capable de basculer entre la polarisation circulaire et linéaire par une simple rotation mécanique du résonateur diélectrique de 45 degrés. L'avantage de cette structure réside dans le fait que les propriétés de la bande passante, du gain, de l’efficacité et de la forme des diagrammes de rayonnement sont maintenues stables lors de la commutation entre les deux configurations de polarisation circulaire et linéaire. / A reliable communication system in confined areas, in particular underground mines, can largely increase safety and production output. Today’s, wireless data rates in confined environments are limited to a maximum of about 1 Gbits/s. The demand for wireless 2 to 10 Gbits/s data rate systems will , however, become a necessity due to the introduction of advanced 4G technologies and the foreseeable implementation of 5G. The potential use of millimeter wave communication systems, such as ISM 60 GHz band, which offers 7 GHz of bandwidth, is one of the most direct and easiest ways to achieve such high data rate of 2–10 Gbits/s. It is well known that 60 GHz signals propagate erratically through in environments with many obstructions, since both the reflected and diffracted waves are significantly attenuated. The polarization of the transmitting and receiving antennas is one of the important parameter to take into account, along with additional losses due to oxygen absorption and propagation path loss in assessing received signal quality. These situations limit the communication achievable distance link and overcoming of these disadvantages requires circular polarization directive antennas with a high gain and broadband capability. This work presents a novel approach to improve the radiation properties of Electromagnetic Band Gap antennas (EBG) using a combination between dielectric resonator and metamaterial superstrate to take advantage of the individual benefits of each of them. The aim is to design, study analytically, numerically and experimentally new performant EBG structures and characterize their potential in terms of bandwidth, gain, efficiency and polarization for an optimum performance around 60 GHz fulfilling the requirements of a mining environment. Initially, an original transmitting 60 GHz antenna with high gain, broadband, circularly polarized Electromagnetic Band Gap (EBG) antenna is presented. The designed antenna is configured with a superstrate based on a frequency selective surface (FSS) placed in front of a Cross Dielectric Resonator (XDRA), installed into a ground plane, which acts as an excitation source. Then, a new analytical approach is developed to derive the radiation properties of the proposed EBG antenna. To satisfy millimeter wave requirements in terms of gain, another hybrid antenna based on the combination of superstrate structures and array technology has been developed. This new multi-source structure has achieved a gain improvement of 3.5 compared to the monosource antenna. However, the bandwidth of these structures remains incompatible with many applications at 60 GHz. To overcome the problem of the limited bandwidth, a new hybrid approach is introduced. This technique is based, on the excitation of the structure by a multilayer cylindrical dielectric resonator antenna, and then, the concept of metamaterial superstrate is introduced for enhancing the gain-bandwidth product. Finally, to make communication more flexible so that the antennas can be used for transmission and reception simultaneously, a new reconfigurable polarisation EBG antenna is designed. The structure is composed of an exciting pyramidal DRA source covered with FSS superstrate. The device can switch between circular and linear polarization by a simple mechanical rotation of the pyramidal DRA by 45°. The advantage of this structure resides in the fact that it maintain stable bandwidth gain, efficiency and radiation properties when switching between the two configurations of circular and linear polarization.

Identiferoai:union.ndltd.org:LAVAL/oai:corpus.ulaval.ca:20.500.11794/27583
Date24 April 2018
CreatorsEl Karkraoui, Taieb
ContributorsDelisle, Gilles Y.
Source SetsUniversité Laval
LanguageFrench
Detected LanguageFrench
Typethèse de doctorat, COAR1_1::Texte::Thèse::Thèse de doctorat
Format1 ressource en ligne (xxi , 155 pages), application/pdf
Rightshttp://purl.org/coar/access_right/c_abf2

Page generated in 0.0031 seconds