Return to search

Approche poro-mécanique au fluage non linéraire du béton : expérimentation et modélisation

La connaissance du comportement différé du béton soumis aux charges élevées est nécessaire pour prévoir la durée de vie des structures à long terme. En particulier dans le cas des ouvrages d’art, cette connaissance est primordiale pour prédire les flèches, l’ouverture de fissure, la redistribution des contraintes dans les structures hyperstatiques et les pertes de précontrainte dans des structures en béton précontraint. Par ailleurs, la prédiction de l’évolution de la fissuration dans le temps, dans le but d’estimer la durée de vie des structures, est une perspective avantageuse et prometteuse que seuls les modèles numériques pertinents au regard des mécanismes de fissuration du béton peuvent offrir. L'objectif de ce travail, pour premier temps, s’intéresse aux mécanismes de fluage non linéaire dans le béton, puis développer un modèle numérique permettant de simuler le fluage tertiaire qui est supposé être à l’origine de l’interaction entre humidité relative et la microfissuration afin de prédire la flèche et l’ouverture de fissure et, a fortiori, la durée de vie. Ce modèle a été développé dans le code aux éléments finis OOFEM, se basant sur le modèle de réseau (lattice model). Pour ce faire, trois programmes ont été mis en route. Le premier consiste à valider le problème de couplage hydro-mécanique en étudiant l’évolution de la perméabilité du béton lors de la traction d’une barre d’armature. La deuxième vise à développer et implémenter les équations non linéaires de transfert de l’humidité relative couplées avec l’endommagement pour prévoir l’ouverture de fissure des poutres préfissurées en flexion quatre points soumis à une charge maintenue élevée. Finalement, le programme expérimental a été réalisé sur des poutres entaillées en flexion quatre points pour valider le modèle proposé, en utilisant la technique de corrélation d’images. Les effets de l’hétérogénéité et le rapport Eau / Ciment (E/C) ont été considérés lors de l’évolution de l’ouverture de fissure. Les résultats montrent que le modèle proposé est capable de simuler l’ouverture de fissure dans le temps des bétons renforcés de fibres (BRF) sous des charges maintenues élevées. / Knowledge of the delayed behaviour of concrete subjected to a high load is necessary for predicting the serviceability of concrete structures. In particular, in the case of civil engineering structures, this knowledge is an influential aspect for predicting deflection, development of microcracking in concrete structures, stress redistribution in hyperstatic structures and prestressing losses in pre-stressed concrete structures. Moreover, the prediction of the evolution of cracking with time in order to estimate the lifetime of structures is an advantageous and promising prospect that only numerical models relevant to the mechanisms of cracking of concretes can offer. The objective of this work is first to investigate the mechanisms of tertiary creep in concrete and then to develop a numerical model to simulate the nonlinear creep behaviour which is supposed to cause the interaction between relative humidity and microcracking in order to predict the deflection and the crack opening as well as the lifetime. This model was developed in the OOFEM finite element code, based on the lattice method. To perform this, three programs were launched. The first one was to validate the hydromechanical coupling problem by examining the evolution of the permeability of reinforced concrete under tensile loading. The second program aimed at developing and implementing the non-linear equations of the relative humidity transfer coupled with damage mechanics to predict the crack opening of the four points bending test on pre-cracked beam subjected to a high sustained load. Lastly, the experimental program was carried out on beams notched to validate the proposed model, using the digital image correlation technique. The effects of heterogeneity and the water-to-cement ratios (E/C) were considered to estimate the effect of those parameters during the evolution of the crack opening. The results show that the proposed numerical model is capable of simulating the deflection and crack opening with time of fiber reinforced concrete (FRC) under high sustained loads.

Identiferoai:union.ndltd.org:LAVAL/oai:corpus.ulaval.ca:20.500.11794/27749
Date24 April 2018
CreatorsPham, Duc Tho
ContributorsFafard, Mario, Sorelli, Luca
Source SetsUniversité Laval
LanguageFrench
Detected LanguageFrench
Typethèse de doctorat, COAR1_1::Texte::Thèse::Thèse de doctorat
Format1 ressource en ligne (xxiii, 197 pages), application/pdf
Rightshttp://purl.org/coar/access_right/c_abf2

Page generated in 0.0021 seconds