Return to search

Modélisation du transport d'eau et du changement de volume dans les neurones et les astrocytes

La microscopie holographique utilise des techniques d’interférométrie pour mesurer les changements de volume des neurones et des astrocytes avec une précision sans précédent. Un défi important serait de relier les changements de phase mesurés aux changements de volume du neurone et plus encore de relier l’étendue de ces changements de volumes à certaines propriétés des neurones comme le niveau d’activité des cotransporteurs cation-chlorure (CCC) et certaines propriétés biomécaniques des membranes. L’objectif à plus long terme est d’utiliser des changements de phase pour détecter des modifications dans la réponse volumique des neurones à un choc osmotique par exemple, modifications qui pourraient éventuellement permettre de détecter des pathologies. Pour comprendre l’information que l’on peut tirer des mesures expérimentales, il est important de comprendre le lien entre différentes variables : force de la pompe Na⁺ – K⁺ATPase, la perméabilité de la membrane à l’eau, les propriétés biomécaniques de la membrane et les changements de phase observés par l’expérimentateur. Pour y arriver, nous aborderons quelques notions sur les systèmes dynamiques, plus précisément nous utiliserons les Equations Différentielles Ordinaires (E.D.O.) afin d’éffectuer la modélisation mathématique du phénomène illustrant la variation du volume de la membrane cellulaire, ainsi que les variations des quantités de K⁺, Na⁺ et Cl⁻, qui constituent la principale composition ionique des astrocytes, qui sont les cellules étudiées dans ce projet. Dans ce même régistre de rappel mathématique sur les systèmes dynamiques, nous parlerons des bifurcations, pour lesquelles nous décrirons quand et comment est ce qu’elles apparaîssent tout en les illustrant par des exemples, ceci dans l’optique de se préparer à une meilleure compréhension des résultats à venir après l’étude de notre modèle, puisqu’on espère y observer des bifurcations. Nous serons ainsi amenés à étudier profondémént le système d’E.D.O obtenu, notamment la recherche des points d’équilibre et leurs comportements dans l’espace des phases, voir s’il ya lieu des points de bifurcation et leurs interprétations pour la cellule concernée. Le but visé étant d’obtenir des bifurcations, ce qui expliquerait le dysfonctionnement des astrocytes, et expliquerait certainement l’origine de certaines maladies maladies neurodégénératives ; nous verrons finalement après étude du modèle qu’il n’existe pas de bifurcation, néanmoins la simplicité du modèle utilisé ouvre des portes à de futurs projets plus complexes qui permettront peut-être d’atteindre les objectifs visés. / The holographic microscopy uses interferometry techniques for measuring changes in volume of neurons with an unprecedented accuracy. A major challenge is to relate the measured phase changes with the neuron volume changes and more to relate the extent of these changes volumes to certain properties of neurons such as the activity level of Cation-Chloride Cotransporter (CCC) and some biomechanical properties membranes. The longer term objective is the use of phase changes for detecting changes in the density response of neurons to an osmotic shock which could possibly allow the detection of many kind of pathologies. To understand the information that can be derived from experimental measurements, it is important to understand the relationship between different variables: force pump Na⁺ – K⁺ ATPase, membrane permeability of water, biomechanical properties of the membranes and the phase changes observed by the experimenter. To achieve this, we need some dynamical system skills, we will use the Ordinary Differential Equations (E.D.O) in order to perform the mathematical modeling of the phenomenon illustrating the variation of the membrane volume, as well as the variations in quantities of K⁺, Na⁺ and Cl⁻, which constitute the main ionic composition of astrocytes, which are the cells studied in this project. In this mathematical recall on dynamical systems, we will talk about the bifurcations for a better understanding of the incoming results since we are expecting bifurcations for our model. We will study deeply the E.D.O. system obtained including the search of equilibrium points and their behavior in the phase space, and we will see if there are bifurcations and what is their meaning. The aim being to obtain bifurcations, which would explain the dysfunction of the astrocytes, and would certainly explain the origin of certain neurodegenerative diseases; we will finally see, after studying the model, that there is no bifurcation, nevertheless the simplicity of the model used opens doors to more complex future projects that will perhaps achieve the desired objectives.

Identiferoai:union.ndltd.org:LAVAL/oai:corpus.ulaval.ca:20.500.11794/27914
Date24 April 2018
CreatorsLenkeu Lenkeu, Nadège Octavie
ContributorsDoyon, Nicolas, Girouard, Alexandre
Source SetsUniversité Laval
LanguageFrench
Detected LanguageFrench
Typemémoire de maîtrise, COAR1_1::Texte::Thèse::Mémoire de maîtrise
Format1 ressource en ligne (viii, 53 pages), application/pdf
Rightshttp://purl.org/coar/access_right/c_abf2

Page generated in 0.0026 seconds