Return to search

Groundwater flow modelling under past ice-sheets : insight into paleo-recharge in the northern Baltic Artesian Basin

Des données de terrain et des études de modélisation ont montré que la recharge d'eau de fonte sous les calottes glaciaires peut avoir un impact important et durable sur l'écoulement des eaux souterraines. En Estonie, au nord du Bassin Artésien Balte (BAB), ce mécanisme de recharge est invoqué pour expliquer la présence d’importants volumes d'eaux souterraines marquées par un signal isotopique et géochimique glaciaire caractéristique, étant donné que la région a connu plusieurs glaciations durant le Pléistocène et a été entièrement recouverte par la calotte Fennoscandienne au cours du Dernier Maximum Glaciaire (DMG), il y a 20000 ans environ. Cette étude vise à tester cette hypothèse à l’aide de simulations numériques. En premier lieu, une étude conceptuelle a été effectuée pour déterminer quels processus sous-glaciaires doivent être représentés dans un modèle numérique qui reproduise adéquatement les écoulements souterrains et le transport de solutés. Les processus suivants ont été étudiés: la recharge sous-glaciaire d'eau de fonte, la déformation poroélastique du milieu poreux sous le poids de la glace, l’isostasie, l’évolution du drainage en surface, le permafrost et les écoulements densitaires impliquant des eaux douces de fonte et des saumures profondes. Ces processus ont été simulés dans un modèle représentant un bassin sédimentaire conceptuel, au cours d'un épisode glaciaire suivi d'une période postglaciaire. Le transport de trois traceurs d’eau glaciaire a été simulé: δ18O, solides dissouts et âge de l’eau. Les résultats montrent que la simulation de la recharge sous-glaciaire avec une condition-limite de type 1 (Dirichlet) n'est pertinente que pour des flux de faible amplitude, ce qui pourrait être le cas sous des calottes glaciaires dont la base n’est que partiellement en fusion. La compression de la matrice rocheuse diminue les surpressions, qui apparaissent uniquement dans les couches à faible diffusivité hydraulique et épaisses. Si la recharge sous-glaciaire est faible, la compression de la matrice rocheuse peut entraîner des sous-pressions après le retrait de la calotte glaciaire. L’isostasie réduit considérablement l'infiltration d'eau de fonte et les écoulements d'eau souterraine. Sous la couche de pergélisol, l'écoulement des eaux souterraines est réduit en-dessous de la calotte glaciaire mais augmente en région périglaciaire. Tenir compte des variations de densité en lien avec la salinité diminue l'infiltration d'eau de fonte en profondeur. Cette étude montre que chaque processus sous-glaciaire est potentiellement important et devrait être pris en compte dans des modèles d’écoulement des eaux souterraines et de transport de solutés en milieu sous-glaciaire. Cependant, il est raisonnable de ne représenter que la recharge sous-glaciaire si les informations manquent pour décrire correctement les autres processus. Par conséquent, ce seul processus a été simulé pour reproduire les écoulements d'eau souterraine sous la calotte Fennoscandienne dans le BAB. Les simulations ont été réalisées dans deux modèles 2D verticaux, afin de vérifier si la recharge sous-glaciaire d’eau de fonte peut expliquer la distribution particulière de δ18O (un traceur d’eau de fonte) dans les eaux souterraines de la région. L’un recoupe l’Estonie, l’autre la Lettonie et les îles estoniennes dans le Golfe de Riga. L'écoulement des eaux souterraines est simulé durant 28000 ans, depuis le DGM jusqu’à aujourd’hui, de même que le transport de δ18O pour tracer l'eau de fonte et confronter les résultats des simulations avec les données de terrain. L'espace d’incertitude de certains paramètres a été exploré, comme l’intensité et la durée de la recharge sous-glaciaire, ainsi que la composition isotopique initiale de l'eau de fonte. Les simulations fournissent un ajustement satisfaisant entre les valeurs observées et calculées de δ18O, confirmant l’hypothèse que le BAB a subi une phase de recharge sous-glaciaire durant le DMG. Elles montrent que la recharge sous-glaciaire a créé une inversion de l'écoulement des eaux souterraines dans le bassin. L’eau de fonte a infiltré tous les aquifères, en particulier les aquifères non confinés. Après le retrait de la calotte Fennoscandienne, l'eau de fonte a été entièrement remplacée par de l'eau météorique moderne, excepté dans les aquifères confinés où de l’eau de fonte a été préservée à proximité des zones de décharge. Par ailleurs, d’importants volumes d'eau de fonte sont probablement préservés sous la mer Baltique. Les simulations indiquent enfin que des épisodes de recharge sous-glaciaire antérieurs au DGM doivent être considérés afin d'expliquer les valeurs de δ18O dans la partie plus profonde du bassin. / Field evidence and modelling studies have shown that subglacial recharge of meltwater under wet-based ice-sheets can have a significant and long-lasting impact on groundwater flow. In the northern Baltic Artesian Basin (BAB), in Estonia, this mechanism of recharge is thought to be responsible of the presence of large volumes of groundwater with a characteristic glacial isotopic and geochemical signal, because the region experienced several glaciations during the Pleistocene and was entirely covered by the Fennoscandian ice-sheet during the Last Glacial Maximum (LGM), some 20 ky BP. The present study aims at testing this hypothesis by means of numerical simulations. First, a conceptual numerical study was performed to determine which glacial and subglacial processes need to be represented in numerical models for adequately capturing subglacial groundwater flow dynamics and solute transport. The relevance of the following processes was studied: subglacial recharge of meltwater, poroelastic deformation of the porous medium under ice-sheet loading, isostasy, evolution of surface drainage, permafrost, and density-dependent flow involving fresh glacial meltwater and deep brines. Simulations of these processes were conducted in a generic sedimentary basin during a single glacial event followed by a postglacial period. The transport of three common tracers of subglacial recharge was simulated: δ18O, TDS, and groundwater age. Results show that simulating subglacial recharge with a fixed flux boundary condition is relevant only for low fluxes, which could be the case under partially wet-based ice-sheets. Glacial loading decreases overpressures, which appear only in thick and low hydraulic diffusivity layers. If subglacial recharge is low, glacial loading can lead to underpressures after the retreat of the ice-sheet. Isostasy considerably reduces the infiltration of meltwater and the groundwater flow rates. Below permafrost, groundwater flow is reduced under the ice-sheet but is enhanced beyond the ice-sheet front. Accounting for salinity-dependent density reduces the infiltration of meltwater at depth. This study shows that each glacial process is potentially relevant in models of subglacial groundwater flow and solute transport. However, representing only subglacial recharge can be a reasonable assumption if information is missing to describe the other processes properly. Therefore, this single process is simulated to reproduce groundwater flow beneath the Fennoscandian ice-sheet in the northern BAB. Simulations are performed in two cross-sectional models, in order to check whether subglacial recharge of meltwater can explain the unusual distribution of δ18O in groundwater in the region, which serves as a tracer of glacial meltwater. One model crosses Estonia, the other crosses Latvia and Estonian islands in the Gulf of Riga. Groundwater flow is simulated over 28 ky, from the Last Glacial Maximum (LGM) to present-day, along with δ18O transport for tracing meltwater and to compare the results of the simulations with field data. Parameter space exploration of subglacial recharge conditions is used to tackle the uncertainty in the intensity and duration of subglacial recharge in the northern BAB, as well as in the isotopic composition of meltwater. Simulations provide a satisfying fit between the observed and the computed values of δ18O, supporting the idea that subglacial recharge happened in the northern BAB during the LGM. Simulations show that subglacial recharge created a flow reversal in the basin. Meltwater infiltrated into all aquifers, especially the shallow ones. After the retreat of the Fennoscandian ice-sheet, meltwater was entirely replaced by modern meteoric water, excepted in confined aquifers where some meltwater has been preserved close to the discharge areas. Large volumes of meltwater are also probably preserved beneath the Baltic Sea. Simulations also indicate that episodes of subglacial recharge prior to the LGM must be considered in order to explain the values of δ18O in the deeper basin.

Identiferoai:union.ndltd.org:LAVAL/oai:corpus.ulaval.ca:20.500.11794/28214
Date January 2017
CreatorsSterckx, Arnaud
ContributorsLemieux, Jean-Michel, Vaikmäe, Rein
PublisherUniversité Laval
Source SetsUniversité Laval
LanguageEnglish
Detected LanguageFrench
Typeinfo:eu-repo/semantics/doctoralThesis
Format1 ressource en ligne (xv, 93 pages), application/pdf
CoverageEstonie, Pléistocène
Rightsinfo:eu-repo/semantics/openAccess, https://corpus.ulaval.ca/jspui/conditions.jsp

Page generated in 0.0033 seconds