Return to search

Inférence et réseaux complexes

Tableau d'honneur de la Faculté des études supérieures et postdoctorales, 2018-2019 / Les objets d’études de la science moderne sont souvent complexes : sociétés, pandémies, grilles électriques, niches écologiques, etc. La science des réseaux cherche à mieux com- prendre ces systèmes en examinant leur structure. Elle fait abstraction du détail, en rédui- sant tout système à une simple collection de noeuds (les éléments constitutifs du système) connectés par des liens (interactions). Fort d’une vingtaine d’années de recherche, on peut constater que cette approche a mené à de grands succès scientifiques. Cette thèse est consacrée à l’intersection entre la science des réseaux et l’inférence statistique. On y traite de deux problèmes d’inférence classiques : estimation et test d’hypothèses. La partie principale de la thèse est dédiée à l’estimation. Dans un premier temps, on étu- die un modèle génératif bien connu (le modèle stochastique par blocs), développé dans le but d’identifier les régularités de la structure des réseaux complexes. Les contributions origi- nales de cette partie sont (a) l’unification de la grande majorité des méthodes de détection de régularités sous l’égide du modèle par blocs, et (b) une analyse en taille finie de la cohérence de ce modèle. La combinaison de ces analyses place l’ensemble des méthodes de détection de régularités sur des bases statistiques solides. Dans un deuxième temps, on se penche sur le problème de la reconstruction du passé d’un réseau, à partir d’une seule observation. À nouveau, on l’aborde à l’aide de modèles génératifs, le transformant ainsi en un problème d’estimation. Les résultats principaux de cette partie sont des méthodes algorithmiques per- mettant de solutionner la reconstruction efficacement, et l’identification d’une transition de phase dans la qualité de la reconstruction, lorsque le niveau d’inégalité des réseaux étudiés est varié. On se penche finalement sur un traitement par test d’hypothèses des systèmes complexes. Cette partie, plus succincte, est présentée dans un langage mathématique plus général que celui des réseaux, soit celui des complexes simpliciaux. On obtient un modèle aléatoire pour complexe simplicial, ainsi qu’un algorithme d’échantillonnage efficace pour ce modèle. On termine en montrant qu’on peut utiliser ces outils pour tester des hypothèses sur la structure des systèmes complexes réels, via une propriété inaccessible dans la représentation réseau (les groupes d’homologie des complexes). / Modern science is often concerned with complex objects of inquiry: intricate webs of social interactions, pandemics, power grids, ecological niches under climatological pressure, etc. When the goal is to gain insights into the function and mechanism of these complex systems, a possible approach is to map their structure using a collection of nodes (the parts of the systems) connected by edges (their interactions). The resulting complex networks capture the structural essence of these systems. Years of successes show that the network abstraction often suffices to understand a plethora of complex phenomena. It can be argued that a principled and rigorous approach to data analysis is chief among the challenges faced by network science today. With this in mind, the goal of this thesis is to tackle a number of important problems at the intersection of network science and statistical inference, of two types: The problems of estimations and the testing of hypotheses. Most of the thesis is devoted to estimation problems. We begin with a thorough analysis of a well-known generative model (the stochastic block model), introduced 40 years ago to identify patterns and regularities in the structure of real networks. The main original con- tributions of this part are (a) the unification of the majority of known regularity detection methods under the stochastic block model, and (b) a thorough characterization of its con- sistency in the finite-size regime. Together, these two contributions put regularity detection methods on firmer statistical foundations. We then turn to a completely different estimation problem: The reconstruction of the past of complex networks, from a single snapshot. The unifying theme is our statistical treatment of this problem, again based on generative model- ing. Our major results are: the inference framework itself; an efficient history reconstruction method; and the discovery of a phase transition in the recoverability of history, driven by inequalities (the more unequal, the harder the reconstruction problem). We conclude with a short section, where we investigate hypothesis testing in complex sys- tems. This epilogue is framed in the broader mathematical context of simplicial complexes, a natural generalization of complex networks. We obtain a random model for these objects, and the associated efficient sampling algorithm. We finish by showing how these tools can be used to test hypotheses about the structure of real systems, using their homology groups.

Identiferoai:union.ndltd.org:LAVAL/oai:corpus.ulaval.ca:20.500.11794/31824
Date19 October 2018
CreatorsYoung, Jean-Gabriel
ContributorsDubé, Louis J., Desrosiers, Patrick
Source SetsUniversité Laval
LanguageFrench
Detected LanguageFrench
Typethèse de doctorat, COAR1_1::Texte::Thèse::Thèse de doctorat
Format1 ressource en ligne (xvi, 196 pages), application/pdf
Rightshttp://purl.org/coar/access_right/c_abf2

Page generated in 0.0026 seconds