Le domaine de l’assurance est basé sur la loi des grands nombres, un théorème stipulant que les caractéristiques statistiques d’un échantillon aléatoire suffisamment grand convergent vers les caractéristiques de la population complète. Les compagnies d’assurance se basent sur ce principe afin d’évaluer le risque associé aux évènements assurés. Cependant, l’introduction d’une relation de dépendance entre les éléments de l’échantillon aléatoire peut changer drastiquement le profil de risque d’un échantillon par rapport à la population entière. Il est donc crucial de considérer l’effet de la dépendance lorsqu’on agrège des risques d’assurance, d’où l’intérêt porté à la modélisation de la dépendance en science actuarielle. Dans ce mémoire, on s’intéresse à la modélisation de la dépendance à l’intérieur d’un portefeuille de risques dans le cas où une variable aléatoire (v.a.) mélange introduit de la dépendance entre les différents risques. Après avoir introduit l’utilisation des mélanges exponentiels dans la modélisation du risque en actuariat, on démontre comment cette construction par mélange nous permet de définir les copules Archimédiennes, un outil puissant pour la modélisation de la dépendance. Dans un premier temps, on démontre comment il est possible d’approximer une copule Archimédienne construite par mélange continu par une copule construite par mélange discret. Puis, nous dérivons des expressions explicites pour certaines mesures d’intérêt du risque agrégé. Nous développons une méthode de calcul analytique pour évaluer la distribution d’une somme de risques aléatoires d’un portefeuille sujet à une telle structure de dépendance. On applique enfin ces résultats à des problèmes d’agrégation, d’allocation du capital et de théorie de la ruine. Finalement, une extension est faite aux copules Archimédiennes hiérarchiques, une généralisation de la dépendance par mélange commun où il existe de la dépendance entre les risques à plus d’un niveau. / The law of large numbers, which states that statistical characteristics of a random sample will converge to the characteristics of the whole population, is the foundation of the insurance industry. Insurance companies rely on this principle to evaluate the risk of insured events. However, when we introduce dependencies between each component of the random sample, it may drastically affect the overall risk profile of the sample in comparison to the whole population. This is why it is essential to consider the effect of dependency when aggregating insurance risks from which stems the interest given to dependence modeling in actuarial science. In this thesis, we study dependence modeling in a portfolio of risks for which a mixture random variable (rv) introduces dependency. After introducing the use of exponential mixtures in actuarial risk modeling, we show how this mixture construction can define Archimedean copulas, a powerful tool for dependence modeling. First, we demonstrate how an Archimedean copula constructed via a continuous mixture can be approximated with a copula constructed by discrete mixture. Then, we derive explicit expressions for a few quantities related to the aggregated risk. The common mixture representation of Archimedean copulas is then at the basis of a computational strategy proposed to compute the distribution of the sum of risks in a general setup. Such results are then used to investigate risk models with respect to aggregation, capital allocation and ruin problems. Finally, we discuss an extension to nested Archimedean copulas, a general case of dependency via common mixture including different levels of dependency. / Résumé en espagnol
Identifer | oai:union.ndltd.org:LAVAL/oai:corpus.ulaval.ca:20.500.11794/33039 |
Date | 21 December 2018 |
Creators | Veilleux, Dery |
Contributors | Marceau, Étienne, Cossette, Hélène |
Source Sets | Université Laval |
Language | French |
Detected Language | French |
Type | mémoire de maîtrise, COAR1_1::Texte::Thèse::Mémoire de maîtrise |
Format | 1 ressource en ligne (xiii, 157 pages), application/pdf |
Rights | http://purl.org/coar/access_right/c_abf2 |
Page generated in 0.0021 seconds