Return to search

Développement de nouveaux matériaux de haute inertie thermique à base de bois et matériaux à changement de phase biosourcés

Tableau d’honneur de la Faculté des études supérieures et postdoctorales, 2018-2019. / Les Matériaux à Changement de Phase (MCP), par stockage de chaleur latente, peuvent améliorer l’efficacité énergétique des bâtiments. En saison froide, ils peuvent emmagasiner de la chaleur durant le jour pour qu’elle soit relâchée durant la nuit, réduisant le besoin en chauffage. En saison chaude, ils peuvent permettre, moyennant une ventilation nocturne adaptée, de réduire la surchauffe des bâtiments. Afin d’optimiser le bénéfice énergétique, l’intégration de MCP doit être minutieusement réfléchie. Ce travail de thèse présente trois grands axes dédiés à l’étude de matériaux hybrides bois/MCP. Le premier axe traite de la mise en forme et de la caractérisation de panneaux décoratifs intérieurs de haute inertie thermique. Le second axe a pour objectif d’évaluer la performance de ces panneaux à l’aide de deux maisonnettes expérimentales instrumentées et placées sur le campus de l’Université LAVAL. Le troisième axe étudie l’imprégnation de la couche de surface d’une Lame de Plancher d’Ingénierie (LPI) avec des microcapsules de MCP. Dans le premier axe, des panneaux intérieurs décoratifs ont été mis en oeuvre. Ils sont constitués de MDF (Medium Density Fiberboard), HDF (High Density Fiberboard) et de différents MCP biosourcés. Les MCP ont été macroencapsulés dans des sachets de polyéthylène avant d’être placés dans les panneaux. Leur stockage de chaleur latente a été mesuré avec un débitmètre thermique selon la méthode Dynamic Heat Flux Meter Apparatus (DHFMA). Les panneaux stockent une chaleur latente maximale de 57.1 J/g, ce qui est comparable à des solutions existantes de panneaux embarquant des MCP. Leur comportement thermique a été comparé au comportement des MCP purs testés par DSC (Differential Scanning Calorimetry) et des différences significatives ont été observées. Le comportement hygromécanique des panneaux a été évalué et s’est révélé être une question d’importance en vue d’une d’industrialisation. Dans le deuxième axe, deux maisonnettes expérimentales en ossature légère de bois ont été conçues puis placées sur le campus de l’Université LAVAL. Une maisonnette a été équipée de panneaux en bois standards tandis que l’autre contenait les panneaux bois/MCP. Grâce à l’instrumentation embarquée, la performance insitu des panneaux formulés dans le premier axe a pu être étudiée. Les résultats montrent, en saison de chauffe, une réduction de la consommation en chauffage pour la maisonnette équipée de MCP. Cette réduction atteint un maximum de 41 % pour le mois de mai. Pour le confort d’été, les panneaux permettent généralement d’améliorer le confort thermique, en réduisant la surchauffe. Leur efficacité a cependant été révélée limitée par la solidification limitée du MCP pendant la nuit. Malgré une ventilation importante, lors des nuits les plus chaudes, le matériau n’était pas en mesure de se solidifier. Dans le troisième axe, des couches de surface de Lames de Planchers d’Ingénierie (LPI) ont été imprégnés avec des microcapsules de MCP biosourcés. De l’eau distillée a été utilisée comme solvant. Deux essences de bois ont été choisies : le chêne rouge et l’érable à sucre. Le gain de masse thermique s’est révélé significatif pour le chêne rouge mais négligeable pour l’érable à sucre. Pour le chêne rouge, un bénéfice de masse thermique de 77% a été mesuré. Les microcapsules ont été observées dans le bois par microscopie réflective. Elles se sont révélées être principalement présentes, formant des amas, dans les larges vaisseaux du bois initial pour le chêne rouge. Des microcapsules étaient également présentes dans les vaisseaux de l’érable à sucre, en plus petite quantité. Des tests d’adhésion ont été menés sur des lames de planchers vernis et ces tests n’ont révélé aucune influence significative de l’imprégnation sur la tenue d’un vernis. / Phase Change Materials (PCMs) are able to store a high amount of latent heat, which can improve buildings energy efficiency. During the heating season, solar energy can be stored during the day to be released at night, reducing the heating needs. During summer, daily maximum peak temperature can be reduced. In order to maximize the energy benefits, PCMs have to be implemented carefully. This thesis presents three major axes of research about wood/PCMs hybrid materials. The first axis is about manufacturing and characterizing woodbased decorative panels of high thermal mass. The second axis aims to evaluate the performance of such panels with two instrumented wood-frame test huts placed on LAVAL University Campus. The third axis is about impregnating the lamella of Engineering Wood Flooring (EWF) with PCM microcapsules. For the first axis, interior wood-based decorative panels containing PCMs were manufactured. Medium Density Fiberboard (MDF), was used as the main component and High Density Fiberboard (HDF) was used for the inner side of the panel. Several bio-based PCMs were chosen to load the panels. A macroencapsulation of the PCMs was achieved using polyethylene bags. The latent heat storage of the panels was assessed with a thermal flow meter using a Dynamic Heat Flux Meter Apparatus (DHFMA) method. A maximum latent heat storage of 57.1 J/g has been measured, which is comparable to existing panels containing PCMs. Thermal behavior of pure PCMs has been assessed by Differential Scanning Calorimetry (DSC) and then compared to the panels behavior. Significant differences have been revealed. Hygromechanical behavior of the panels has been evaluated, compared to a reference, and has been revealed of importance in case of industrialization. For the second axis, two experimental timber-frame test-huts have been implemented and were placed on the LAVAL University campus. One hut was equipped with standard wood panels whereas the other one was equipped with wood-based panels containing PCMs such as manufactured in the first axis. The in-situ performance of the panels was assessed over several seasons. In winter, the panels induced a reduction of the heating consumption. This reduction reached a maximum of 41% in May. During summer, the panels are generally able to reduce the daily peak temperature. However, their performance was found limited by the solidification of the PCM, which was hard to achieve during hottest nights. For the third axis, lamellas of Engineered Wood Flooring (EWF) have been impregnated with bio-based PCM microcapsules, using water as a solvent. Two wood species were chosen: red oak and sugar. A significant thermal mass enhancement of 77% was measured for the red oak. Impregnation of sugar maple was found harder to achieve and thus its thermal mass enhancement was lower. Reflective microscopy allowed to observe the microcapsules filling red oak initial wood big vessels, forming aggregates. Some microcapsules were also observed in the sugar maple vessels but in lower quantity. Red oak was varnished with a 100 % UV solid wood coating and submitted to pull-off adhesion tests. These tests did not reveal any significant effect of an impregnation on the varnish adherence.

Identiferoai:union.ndltd.org:LAVAL/oai:corpus.ulaval.ca:20.500.11794/33718
Date January 2019
CreatorsMathis, Damien
ContributorsBlanchet, Pierre, Landry, Véronic, Lagière, Philippe
PublisherUniversité Laval
Source SetsUniversité Laval
LanguageFrench
Detected LanguageFrench
Typeinfo:eu-repo/semantics/doctoralThesis
Format1 ressource en ligne (xiv, 109 pages), application/pdf
Rightsinfo:eu-repo/semantics/openAccess, https://corpus.ulaval.ca/jspui/conditions.jsp

Page generated in 0.0036 seconds