Return to search

Caractérisation de points quantiques comme matériau luminescent pour applications en dosimétrie

La thèse présentée porte sur l’investigation d’un nouveau matériau luminescent pour une application en dosimétrie à scintillation, un matériau développé pour la première fois il y a environ une vingtaine d’années : les points quantiques colloïdaux (cQDs). Ces derniers sont des nanocristaux de semi-conducteurs possédant des propriétés uniques, découlant entre autres du confinement tridimensionnel de leurs porteurs de charge. Les cQDs constituent un matériau d’intérêt pour la dosimétrie à scintillation d’abord grâce à leur luminescence dont l’intensité est bonifiée par rapport à celle de leur équivalent macroscopique. Plusieurs autres propriétés des cQDs les rendent intéressants pour le développement d’un dosimètre à scintillation. Ils possèdent un large spectre d’absorption et un étroit spectre d’émission, dont la position du maximum d’absorption (émission) est dépendante de la taille et de la composition des cQDs. De plus, il existe de multiples supports physiques dans lesquels peuvent être insérés les cQDs, des supports comme divers solvants ou plastiques. Peu de travaux ont été menés sur la caractérisation de cQDs comme scintillateurs, spécialement dans le contexte d’une application en dosimétrie à scintillation pour la radio-oncologie. Une panoplie d’avenues nécessitaient donc d’être explorées pour établir un portrait des cQDs comme matériau luminescent pour des applications en dosimétrie. Plusieurs formes physiques dans lesquelles étaient inclus les cQDs ont été testées : de la poudre, des liquides et des plastiques. La majeure partie de la thèse traite de la caractérisation de cQDs comme scintillateur, mais une portion de la thèse porte aussi sur le développement d’instrumentation spécifique à la mesure aux accélérateurs linéaires. Celui-ci a été motivé par le fait que l’accélérateur linéaire a un rapport cyclique de 0,144%, faisant en sorte que la majorité de l’intégration continue de signal lumineux collecte du bruit. Un prototype de circuit intégrateur synchronisé a donc été développé, ce qui a permis de faire un gain sur le rapport signal sur bruit du signal mesuré. Concernant la caractérisation des cQDs, la première étude présentée rapporte les résultats d’une comparaison de la résistance à la radiation ionisante de cQDs à coquille simple et de cQDs à coquilles multiples, ce dernier étant le type utilisé pour le projet de thèse. Il a été montré que les cQDs à coquilles multiples ont une meilleure résistance à la radiation que les cQDs à coquille simple grâce à leur meilleure passivation de surface. De plus, la répétition de multiples irradiations entrecoupées de pauses a fait ressortir deux effets antagonistes pour chaque type de cQDs concernant la récupération, ou non, de leur efficacité de scintillation. Les cQDs à coquille simple ont présenté une accélération de la dégradation de leur scintillation entre les pauses alors que les cQDs à coquilles multiples ont présenté un recouvrement systématique de leur intensité de scintillation. Ensuite, une étude portant sur les dispersions liquides de cQDs est présentée. On en retire que l’efficacité de scintillation dépend de la nature du solvant dans lequel sont dispersés les cQDs. L’alkylbenzène, le meilleur solvant, permet notamment d’obtenir une intensité de scintillation constituant le dixième de celle du scintillateur commercial Ultima Gold, et ce, malgré que la concentration de cQDs soit cinq ordres de grandeur plus faible que celle du fluorophore dans Ultima Gold. La dernière étude présentée porte sur la poursuite de la caractérisation des formes poudreuse et liquide de cQDs comme dosimètres. Des mesures rapportant la linéarité du signal en fonction de la dose déposée ont été menées pour des faisceaux de photons et d’électrons. D’autres mesures ont permis de caractériser la dépendance du signal en fonction de l’énergie du faisceau. Il a été montré que les dispersions liquides ont la dépendance la moins marquée, ayant une variation maximale de 15% à 220 kVp par rapport au signal à 6 MV pour la dispersion dans l’alkylbenzène. Cette variation se trouve même à être plus petite que celle observée pour la fibre scintillante BCF-60 et pour Ultima Gold. Quelques résultats préliminaires sont finalement rapportés concernant les scintillateurs plastiques de cQDs. Entre autres, il a été observé, aux énergies kV, que la dépendance en énergie du signal suit une tendance similaire à celle du BCF-60, mais dont l’amplitude de variation est moindre. En conclusion, chacune des formes de cQDs testées possède des particularités qui pourraient mettre de l’avant son utilisation en dosimétrie à scintillation. Ces dernières sont relatées en détail dans la conclusion de la thèse. / This thesis presents the investigation of a new luminescent material as the sensible volume of scintillating dosimeters, a material which has been developed in the past twenty years: colloidal quantum dots (cQDs). These nanocrystals are composed of semiconductors and have unique properties, which are in part due to the three-dimensional quantum confinement of their charge carriers. cQDs constitute a material of interest for scintillation dosimetry since they have a more important light emission than their bulk counterpart. Moreover, they have a wide absorption and a narrow emission spectrum, for which their maximum absorption (emission) is tuneable with the cQD size and composition. The cQDs can be incorporated to many physical supports like liquids or plastics. Few studies have characterized cQDs as scintillators for an application in radiation oncology dosimetry. Thus, many research paths had to be explored to establish the portrait of cQDs as a luminescent material for applications in dosimetry. cQDs under multiple physical forms were tested: powder, liquids and plastics. Even though the major part of the thesis deals with the characterization of cQDs, work has been done on improving the light signal collection. This part of the project was motivated by the low duty cycle of the linear accelerator (0.144%), which results in a continuous light acquisition including a lot of noise. Thus, a prototype of an integrated synchronized circuit was developed and lead to a better signal to noise ratio of the light signal collected, evaluated to be up to 8 times better. The first study on the cQD characterization reports the comparison results of the resistance to ionizing radiation of core/shell (CS) and multishell (MS) cQDs, the type that is used throughout the thesis. MS cQDs have proven to have a better radiation resistance than CS cQDs due to their better surface passivation. Moreover, repeated irradiations separated with pauses put forward an opposite trend concerning the effect of the pauses on the recovery of the scintillation efficiency. CS cQDs presented an accelerated degradation of their light production efficiency while MS cQDs showed a systematic scintillation efficiency recovery. In the second study, measurements were conducted in order to characterize the cQD liquid dispersions. It was observed that the cQD dispersion scintillation efficiency was dependent on the nature of the solvent. The alkylbenzene dispersion, offering the best light production, wasshown to reach a tenth of the light emission intensity of the commercial scintillator Ultima Gold. This observation is remarkable since the cQD concentration is five orders of magnitude lower than the fluorophore concentration in Ultima Gold. The last study presents the continuing characterization of the cQD powder and the cQD liquid dispersions as dosimeters. It is reported that their scintillation output is linear with dose when the cQDs are irradiated with various photon and electron beam energies. The light output dependence on beam energy was also quantified and it was shown that the cQD liquid dispersions have the least important dependence. Indeed, the alkylbenzene dispersion has a maximal signal variation from 6 MV of 15% observed at 220 kVp, a variation lower than what was reported for the scintillating fiber BCF-60 and Ultima Gold. Preliminary results are also presented for the cQD plastic scintillators. At kV energies, it was observed that the energy dependence of the scintillation output followed a similar trend than that of the BCF-60’s but had a lower variation amplitude. To conclude, each of the cQD forms has a potential in being used for scintillation dosimetry considering their proper particularities. These particularities are discussed in detail in the conclusion of the thesis.

Identiferoai:union.ndltd.org:LAVAL/oai:corpus.ulaval.ca:20.500.11794/35023
Date29 May 2019
CreatorsDelage, Marie-Ève
ContributorsAllen, Claudine, Beaulieu, Luc
Source SetsUniversité Laval
LanguageFrench
Detected LanguageFrench
Typethèse de doctorat, COAR1_1::Texte::Thèse::Thèse de doctorat
Format1 ressource en ligne (xx, 168 pages), application/pdf
Rightshttp://purl.org/coar/access_right/c_abf2

Page generated in 0.0031 seconds