Return to search

High-coherence dual-comb interferometry with free-running lasers

La spectroscopie double-peigne est une technique qui consiste à faire interférer deux peignes de fréquences laser légèrement désynchronisés ayant sondé un échantillon afin de retrouver sa signature spectrale avec une haute résolution et à grande vitesse. Cependant, elle requiert deux lasers qui sont mutuellement cohérents, une contrainte qui est habituellement satisfaite par stabilisation active au prix d’une plus grande complexité matérielle. Cette thèse aborde ce problème en présentant des solutions qui permettent l’utilisation de peignes en opération libre, simplifiant ainsi la technique du double-peigne. On démontre d’abord une plateforme laser compacte capable de générer une paire de peignes de fréquences qui sont affectés de manière similaire par les perturbations environnementales. Elle est basée sur une puce de verre dopée à l’erbium contenant plusieurs guides d’ondes inscrits par laser et séparés de quelques centaines de microns. Deux guides adjacents sont pompés simultanément et opérés en régime de synchronisation modale à ∼ 1 GHz dans la bande de 1.5 μm pour fournir une paire de peignes corrélés. Le bruit de fréquence en opération libre de cette source est ensuite caractérisé et on estime un temps de cohérence mutuelle qui dépasse le temps de mesure requis pour obtenir un spectre à haute résolution. Ceci est rendu possible grâce à l’utilisation de lasers qui sont intrinsèquement peu bruités, à l’intégration mécanique de la source, et à l’utilisation d’une grande différence entre les cadences des peignes. On présente aussi deux algorithmes de correction qui, lorsque combinés avec notre source double-peigne, permettent d’étendre artificiellement son temps de cohérence afin d’augmenter le temps de moyennage utile sans sacrifier la résolution spectrale. Ces algorithmes estiment et compensent la phase et le temps d’arrivée des interférogrammes mesurés, et ce sans recourir à aucune mesure externe des fluctuations des peignes. Ils sont d’abord décrits en détail puis leurs limites sont déterminées de façon quantitative à partir des paramètres des peignes et de leur bruit de fréquence relatif, où une grande différence entre les cadences apparaît comme étant la clé d’une correction réussie. Finalement, les performances du spectromètre double-peigne assisté par la correction logicielle sont démontrées en mesurant le spectre de transmission de l’acétylène et du cyanure d’hydrogène avec un échantillonnage spectral de ∼1 GHz. La qualité des mesures est validée par comparaison avec des spectres simulés à partir de données connues. / Dual-comb spectroscopy is a technique where two slightly detuned laser frequency combs are interfered together after probing a sample under study in order to retrieve its spectral signature with a high resolution and at high speed. However, it requires two lasers that are mutually coherent, a constraint that is most often satisfied by active stabilization at the cost of an increased hardware complexity. This thesis tackles this issue by presenting solutions that allow the use of free-running combs, thus simplifying the dual-comb technique. First, we demonstrate a compact laser platform able to generate a pair of frequency combs that are similarly affected by environmental perturbations. It is based on an erbium-doped glass chip containing a number of ultrafast-laser-inscribed waveguides separated by a few hundred microns. Two adjacent waveguides are pumped simultaneously and passively mode-locked at ∼1 GHz in the 1.5 μm band to deliver a pair of correlated frequency combs. The free-running frequency noise of this source is characterized thoroughly and its mutual coherence time is found to exceed the measurement time required to retrieve a high-resolution spectrum. This is made possible by the use of intrinsically low-noise waveguide lasers, by the dual-comb source’s mechanical integration, and by the use of a large repetition rate difference between the combs. We also present two correction algorithms that, when combined with our dual-comb source, allow to artificially extend its coherence time in order to increase the useful averaging time without sacrificing the spectral resolution. These algorithms work by estimating and compensating the phase and timing of the measured interferograms without relying on any external measurement of the combs’ fluctuations. They are first described in detail and their limitations are determined quantitatively in terms of the combs’ parameters and relative frequency noise, where a large repetition rate difference appears to be the key to a successful correction. Finally, the performance of the dual-comb spectrometer assisted by a software correction is demonstrated by measuring the transmission spectrum of acetylene and hydrogen cyanide with a spectral sampling of ∼1 GHz. The quality of the measurements is validated by comparison to spectra simulated from known data.

Identiferoai:union.ndltd.org:LAVAL/oai:corpus.ulaval.ca:20.500.11794/36903
Date15 October 2019
CreatorsBourbeau Hébert, Nicolas
ContributorsGenest, Jérôme
Source SetsUniversité Laval
LanguageFrench
Detected LanguageFrench
Typethèse de doctorat, COAR1_1::Texte::Thèse::Thèse de doctorat
Format1 ressource en ligne (xii, 120 pages), application/pdf
Rightshttp://purl.org/coar/access_right/c_abf2

Page generated in 0.0025 seconds