Return to search

Development of multilayered and W03 nanoparticle silica-based fibers for second harmonic generation

Cette thèse décrit le développement de la modélisation et de la fabrication de nouvelles fibres multicœurs concentriques de silice dopées utilisant le dépôt chimique en phase vapeur modifié (MCVD). Cette structure multicouche alternative a été développée avec plusieurs cycles de fabrication avec un nombre différent de couches (4, 8, et 16) avec différents dopants tels que le germanium (Ge) et le phosphore (P) selon le modèle proposé par l’Advanced Photonics Component Laboratory (APCL) à l’Université de Carleton sous la direction du Prof. Jacques Albert. Cette fibre multicouche cylindrique de silice dopée alternativement au germanium et au phosphore est considérée comme une conception prometteuse pour générer la deuxième harmonique (SHG). Il est proposé que les couches dopées au germanium (ou phosphore) piègent les charges positives qui migrent au cours du processus de polarisation. Le piégeage des charges positives crée des régions de déplétion dans chaque couche, ce qui élargit la région entière d’effet non linéaire à l’intérieur de la fibre à cœur unique. Ces préformes de structures multicœurs concentriques ont été caractérisées en termes de profils d’indice de réfraction (RIP), de pourcentage en poids de l’aide de la spectroscopie dispersive en longueur d’onde (WDX) et de la mesure des franges Maker afin de comprendre l’effet non linéaire de second ordre initial, principalement la SHG, dans les préformes fabriquées. Ces préformes ont été étirées en fibres tout en conservant la géométrie identique à celle obtenue à l’étape des préformes. Ces fibres formées de 16 couches concentriques polarisées sont caractérisées en termes de propriétés de propagation et non linéaires du second ordre (SON), principalement la SHG, par le couplage d’un faisceau laser pulsé dans les échantillons. Ces fibres en 16 couches se sont avérées produire une intensité de SHG et cette intensité a été améliorée du premier cycle de fabrication au troisième cycle de fabrication, où l’émission de lumière verte de SHG a été observée via une caméra standard et détectée par un tube photomultiplicateur (PMT) (1050mV et 1600 mV) pour les premier et troisième cycles de fabrication des fibres à 16 couches. Ila été observé que les intensités de SHG pour les échantillons de préformes et les échantillons de fibres obéissent aux lois des relations quadratiques. De plus, une autre approche prometteuse a été l’adoption de la fibre à cœur à multi composition. Dans cette approche, des nanoparticules métalliques WO3−x, obtenues par un procédé de polyol, ont été incorporées dans le cœur de la fibre. L’un des métaux distingués, le tungstène(W), a un potentiel énorme pour produire des effets non linéaires élevés. Les nanoparticules WO3−x ont été incorporées avec l’aluminium via le MCVD couplé à une technique de dopage en solution. Ces échantillons de préformes et de fibres ont démontré une intensité de SHG élevée, mesurée à l’aide d’un analyseur de spectre optique (OSA), et la relation quadratique entre la puissance injectée et l’intensité de SHG a été observée. / This thesis deals with the process of modelling and fabrication of two novel structured doped fibers through modified chemical vapour deposition (MCVD) for second harmonic generation (SHG). The first one is constituted of multilayered core structure doped silica fiber. This alternative structure has been developed with several fabrication cycles which include different number of layers (4, 8, and 16) with different dopants such as germanium (Ge) and phosphorous (P). The doped core is consisting of alternating germanium (phosphorous) layers which is a promising design for SHG. It is proposed that the germanium (or phosphorous) doped layers trap the positive charges that migrate during the poling process. The trapping of positive charges creates depletion regions in each layer which enlarge the nonlinear region within the core fiber. In a first stage, multilayered core structure preforms were characterized in terms of refractive index profiles (RIPs), weight percent using Wavelength Dispersive Spectroscopy (WDX) and Maker fringe measurements to check their potential for non-linear conversion. These preforms were drawn into fibers while maintaining their primary geometry. The fibers are characterized in terms of propagation properties and second order nonlinear (SON) conversion through the coupling of pulsed laser beams into the poled fibers samples. Of these, 16-layers fibers have been demonstrated to produce the most intense SHG resulting in three cycles of fabrication to improve green light emission as detected by regular camera and a Photomultiplier (PMT) (1050 mV and 1600 mV). The SHG intensify for preform samples and fiber samples obeys the quadratic relationship laws. The second approach was the adoption of multi-composition core fiber. In this approach metal nanoparticles were incorporated into fiber core. One of the unique metals, tungsten (W) has a massive potential to produce high nonlinear response. The WO3−x nanoparticles were incorporated along with aluminum via MCVD coupled with solution doping technique. These preform samples and fiber samples have shown high SHG intensity as obtained by optical spectrum analyzer i.e. quadratic relationship between injected power and SHG intensity endorses is verified.

Identiferoai:union.ndltd.org:LAVAL/oai:corpus.ulaval.ca:20.500.11794/67895
Date11 February 2021
CreatorsAbdullah, Salah Mohammed Salah
ContributorsMessaddeq, Younès
Source SetsUniversité Laval
LanguageFrench
Detected LanguageFrench
Typethèse de doctorat, COAR1_1::Texte::Thèse::Thèse de doctorat
Format1 ressource en ligne (xvi, 129 pages), application/pdf
Rightshttp://purl.org/coar/access_right/c_abf2

Page generated in 0.0025 seconds