Return to search

Interaction du bio-brai avec le coke : effet du bio-brai sur la formulation d'anode

Les producteurs d'aluminium sont constamment confrontés à des défis concernant l'augmentation des coûts de production et notamment ceux liés au brai de goudron de houille. Le brai de goudron de houille est utilisé comme liant pour produire des anodes en carbone. Indépendamment des avantages techniques du brai de goudron de houille, il contient des hydrocarbures aromatiques polycycliques (HAP), connus pour être cancérigènes pour l'homme et nocifs pour l'environnement. De plus, l’augmentation phénoménale de la production d’aluminium des trente dernières années exerce une pression importante sur le marché du brai, causant une difficulté en l’approvisionnement de ce dernier. Pour surmonter ce défi, des sources de substitution au brai de goudron de houille capables de résoudre les problèmes de coût et de santé sans diminuer la qualité de l'anode sont donc d'un grand intérêt pour l’industrie. Le bio-brai produit à partir de bio-huile, pourrait être un bon candidat à cet égard. Cependant, les propriétés du bio-brai pourraient être significativement différentes de celles du brai de goudron de houille en fonction de ses origines et des conditions de son procédé. Cette étude se concentre sur la synthèse de bio-brai à partir de bio-huile dans différentes conditions de pyrolyse et la caractérisation de ses propriétés physiques et chimiques, dans le but de déterminer les conditions qui peuvent conduire à des propriétés appropriées pour la formulation d'anode. Nous avons d’abord synthétisé du bio-brai dans différentes conditions. Les bio-brais produits ont été soigneusement caractérisés afin de comprendre l’effet du procédé de fabrication sur leurs propriétés. Parmi les caractérisations typiques, on peut nommer l’analyse chimique et la détermination de la densité, du point de ramollissement, de la valeur de cokéfaction, de la teneur en insolubles de quinoléine (QI), de la teneur en HAP, de la masse moléculaire, de la viscosité, de la composition élémentaire, des structures chimiques ainsi que des mécanismes de réaction se produisant pendant le processus de pyrolyse. Ensuite, nous nous sommes concentrés sur la caractérisation de l'interaction du bio-brai avec du coke afin de comprendre son comportement et son rôle, en tant que lien, lors de la fabrication d’anode. Les informations sur la capacité de mouillage du bio-brai à la surface de la particule de coke sont d'un grand intérêt pour évaluer son utilisation éventuelle en tant que liant dans la formulation d’anode. iv Nous avons montré que la mouillabilité du bio-brai est fortement influencée par sa viscosité, sa tension superficielle, ses groupes chimiques fonctionnels de surface, sa quantité de QI et sa distribution de masse moléculaire. La bonne mouillabilité du bio-brai améliore la densification de l'anode et atténue ainsi l'effet négatif de sa faible valeur de cokéfaction sur la densité de l'anode cuite. Afin d'optimiser les propriétés du bio-brai, l'étude visant à ajuster la teneur en QI a également été effectuée afin d'améliorer ainsi sa valeur de cokéfaction en ajoutant différentes quantités d'additif (bio-char). / Aluminium producers are constantly facing challenges regarding the increase in production costs including those related to coal-tar-pitch (CTP). CTP, a fossil material with carbon footprint, is used as binder to produce carbon anodes. Regardless of the technical benefits of CTP, it contains polycyclic aromatic hydrocarbons (PAHs), known to be carcinogenic for humans and detrimental to the environment. Furthermore, the escalating production capacity of aluminium during the past 3 decades exerts a considerable pressure on the pitch supply chain. To overcome this challenge, alternative sources to CTP capable of addressing the health issues and zero carbon footprint without decreasing anode quality, are thus of great interest. Bio-pitch, produced from bio-oil, could be a good candidate in this regard. However, the properties of bio-pitch could be significantly different from those of CTP depending on its origins and process conditions. This study focuses on the synthesis of bio-pitches from bio-oil under different pyrolysis conditions and characterization of its physical and chemical properties, aiming at determining the conditions which may result in suitable properties for anode formulation. We first synthesized biopitch from bio-oil under different conditions. The resulting biopitches were deeply characterized in order to understand the effect of process parameters on their properties. Among these typical characterizations are determination of density, softening point, coking value, quinoline insoluble, PAH content, molecular weight, viscosity, elemental composition, chemical structures as well as the reaction mechanisms occurring during the pyrolysis process. Then we focused on characterisation of biopitch interaction with coke in order to assess its behaviour and its role, as a binder, in anode formulation. Information on the wetting capacity of bio-pitch on the surface of coke particle is also of great interest in assessing its possible use as a renewable and environmental-friendly binder. It was shown that the wettability of bio-pitch is greatly influenced by its viscosity, surface tension, surface chemical functional groups, amount of quinoline insoluble, and molecular weight distribution. The good wettability of bio-pitch enhances the anode densification, thus mitigates the negative effect of its low coking value on the baked anode density. In order to improve the bio-pitch properties, the investigation to increase the QI content thereby to vi improve its coking value by adding different amounts of solid bio-char as an additive were also studied

Identiferoai:union.ndltd.org:LAVAL/oai:corpus.ulaval.ca:20.500.11794/67909
Date January 2020
CreatorsLu, Ying
ContributorsDarvishi Alamdari, Houshang, Ollevier, Thierry
PublisherUniversité Laval
Source SetsUniversité Laval
LanguageFrench
Detected LanguageFrench
Typeinfo:eu-repo/semantics/doctoralThesis
Format1 ressource en ligne (xxii, 182 pages), application/pdf
Rightsinfo:eu-repo/semantics/openAccess, https://corpus.ulaval.ca/jspui/conditions.jsp

Page generated in 0.0027 seconds