Return to search

The therapeutic potential of Cysteamine to treat various features of Parkinson's disease

La maladie de Parkinson (MP) est la deuxième maladie neurodégénérative la plus fréquente touchant 3 % de la population âgée de 65 ans et plus. La perte neuronale au niveau de la substantia nigra (SN) et induisant une réduction de la dopamine (DA) striatale ainsi que la présence d'agrégats formées principalement de la protéine α-Synuclein (α-Syn) caractérisent la MP. Bien que le diagnostic clinique soit basé sur la présence de déficits moteurs spécifiques, la MP est également associée à des dysfonctionnements de divers mécanismes cellulaires, notamment la dégradation de α-Syn, la fonctionnalité mitochondriale, le trafic axonal, la réponse neuroinflammatoire et l'augmentation du stress oxydatif. Jusqu'à présent, aucune thérapie n'est en mesure de ralentir et/ou de restaurer la dégénérescence neuronale. Les traitements actuellement utilisés se basent principalement sur le remplacement pharmacologique de la DA striatale et sont accompagné d'approches non-dopaminergiques, ciblant, par exemple, les récepteurs adrénergiques et sérotoninergiques pour mieux traiter les symptômes moteurs et non-moteurs. Des stratégies non-pharmacologiques, telles que la stimulation cérébrale profonde (SCP), ont permis une meilleure prise en charge des personnes qui ne répondent plus aux traitements pharmacologiques classiques. Des thérapies expérimentales en cours tentent, quant à elles, de restaurer la DA striatale par des approches génétiques et cellulaires, et plus récemment, des études cliniques évaluant de nouvelles stratégies basées sur l'agrégation de l'α-Syn et le transport cellulaire ont vu le jour. Deux défis majeurs demeurent toujours: 1) Identifier de nouveaux composés capables de ralentir, de sauver et/ou d'induire la régénérescence des neurones et 2) identifier des biomarqueurs caractéristiques de la phase prodromique de la maladie permettant des interventions précoces. Parmi les différents candidats potentiels présentant un tel effet, notre laboratoire a identifié une molécule, la cystamine, et son métabolite actif, la cystéamine. Tous deux ont déjà été testés chez l'homme pour d'autres indications, telle que pour la maladie de Huntington (MH). Les molécules cystamine/cystéamine agissent par de multiples voies jugées critiques à la pathogenèse de la MP. En particulier, la cystamine est capable de traverser la barrière hémato-encéphalique. De plus, les molécules cystamine/cystéamine peuvent favoriser la sécrétion de facteurs neurotrophiques, inhiber le stress oxydatif et réduire les réponses inflammatoires. Au cours des dernières décennies, notre laboratoire a cumulé plusieurs données suggérant que les molécules cystamine/cystéamine peuvent ralentir, et même inverser les processus neurodégénératifs induits dans de nombreux modèles de la MP. Afin d'approfondir nos connaissances sur les potentiels bénéfiques de l'utilisation de la cystéamine dans la MP, nous avons testé ce composé sous conditions in vivo. Nous avons utilisé des souris transgéniques Thy1-α-Syn présentant une pathogenèse progressive de type MP, accompagnés d'importants déficits moteurs et tout particulièrement, de la voie nigrostriée. L'utilisation de ce modèle nous a permis d'évaluer si un traitement à la cystéamine pouvait avoir un impact sur l'accumulation de l'α-Syn humaine et son implication dans la formation de corps de Lewy. Les résultats obtenus ont montré que le médicament peut améliorer les capacités motrices des souris traitées, présentant entre autres une action spécifique sur la voie nigrostriée. Cet effet peut être partiellement dû à la réduction des niveaux d'α-Syn de type « sauvage » et d'autres formes de la protéine (phosphorylée et filamentée) détectées par des analyses post-mortem chez les souris traitées. L'effet thérapeutique de la cystéamine a également été démontré in vitro en utilisant des neurones dopaminergiques (DAergiques) dérivés de cellules souches pluripotentes induites d'un patient atteint de la MP et porteur de la triplication du gène SNCA. Cette étude a montré l'activité bénéfique de la cystéamine dans la restauration des ramifications neuronales et dans l'augmentation de la viabilité cellulaire des neurones DAergiques exposés à la neurotoxine 6-hydroxy-DA. Les résultats présentés ici, ainsi que ceux de nos études antérieures, suggèrent des propriétés bénéfiques de la cystéamine à l'égard de plusieurs marqueurs de la MP ainsi que des capacités à modifier le cours évolutif de la maladie. / Parkinson's disease (PD) is the second most common neurodegenerative disorder affecting 3% of the population aged 65 years of age and older. The disease hallmarks include neuronal loss at the level of the substantia nigra (SN) that leads to a decrease in striatal dopamine (DA) and the presence of inclusions mainly composed of the protein α-Synuclein (α-Syn). Although clinical diagnosis is based on the appearance of motor deficits, PD also presents with a number of non-motor symptoms that worsen the patient's quality of life. Neuropathologically, PD is characterized by the malfunction of various cellular mechanisms including α-Syn degradation, mitochondrial function, axonal trafficking, neuroinflammation and increased oxidative stress. To date, not a single compound/approach has shown the capacity to reverse or slow down neuronal degeneration. Therefore, PD therapy is still anchored to the pharmacological replacement of striatal DA levels and is often accompanied by non-dopaminergic approaches targeting, for example, the adrenergic and serotoninergic receptors, to better manage motor and non-motor symptomatology. Non-pharmacological strategies, such as deep brain stimulation (DBS), have allowed better symptomatic management, especially for individuals developing intractable motor contraindications due to DA replacement therapy. Promising experimental therapies have attempted to re-establish striatal DA through gene and cell-based strategies. More recently, new strategies targeting α-Syn aggregation and cellular transport have entered clinical trials. The most significant challenges in PD research include the: 1) identification of new disease-modifying agents able to slow down, rescue and/or induce regeneration of dying neurons and the 2) identification of biomarkers for the prodromal disease stages, which would allow early intervention. Among the various potential candidates displaying disease-modifying proprieties, our laboratory has identified cystamine, and its active metabolite cysteamine, already under trial in humans for other clinical indications, including another neurodegenerative disorder, Huntington's disease (HD). The molecule cystamine/cysteamine acts via multiple pathways that have been determined critical to the pathogenesis of PD. In particular, cystamine is capable of crossing the blood-brain barrier, and both agents (cystamine and cysteamine) can promote the secretion of neurotrophic factors, inhibit oxidative stress and reduce inflammatory responses. Over the last decade, our laboratory has accumulated compelling evidence that both cystamine and cysteamine can halt, and even reverse, ongoing neurodegenerative processes in various PD models. To expand our knowledge on the potential efficacy of cysteamine to treat PD, my thesis focused on testing the drug in vivo using the Thy1-α-Syn transgenic mouse model that displays a progressive PD-like pathogenesis and a number of behavioural motor deficits due to an age-related impairment of the nigro-striatal pathway. The use of this model has also allowed us to investigate whether treatment with cysteamine could impact the accumulation of human α-Syn and its related forms involved in Lewy body formation. The results obtained have shown how the drug can improve the motor skills of treated mice and specificity of action towards the nigro-striatal pathway. This effect may be partially due to the reduction of wild type (WT) α-Syn levels and other forms of the protein, e.g. phosphorylated and filamented that were detected in post-mortem analyses of the treated mice. The potential therapeutic effect of cysteamine on DA neurons has further been demonstrated in vitro using induced pluripotent stem cell- (iPSC) derived dopaminergic (DAergic) neurons from a PD patient carrying a triplication of the SNCA gene. This study showed the ability of the drug to restore neurite ramifications and increase cell viability of dying DAergic neurons exposed to the neurotoxin 6-hydroxy-DA. The findings herein, presented together with results from our previous investigations, suggest the potential efficacy of cysteamine towards multiple PD hallmarks as well as disease-modifying properties.

Identiferoai:union.ndltd.org:LAVAL/oai:corpus.ulaval.ca:20.500.11794/68781
Date15 April 2021
CreatorsSiddu, Alberto
ContributorsCicchetti, Francesca
Source SetsUniversité Laval
LanguageEnglish
Detected LanguageFrench
Typethèse de doctorat, COAR1_1::Texte::Thèse::Thèse de doctorat
Format1 ressource en ligne (xxv, 159 pages), application/pdf
Rightshttp://purl.org/coar/access_right/c_abf2

Page generated in 0.0037 seconds