Return to search

Defect detection in infrared thermography by deep learning algorithms

L'évaluation non destructive (END) est un domaine permettant d'identifier tous les types de dommages structurels dans un objet d'intérêt sans appliquer de dommages et de modifications permanents. Ce domaine fait l'objet de recherches intensives depuis de nombreuses années. La thermographie infrarouge (IR) est l'une des technologies d'évaluation non destructive qui permet d'inspecter, de caractériser et d'analyser les défauts sur la base d'images infrarouges (séquences) provenant de l'enregistrement de l'émission et de la réflexion de la lumière infrarouge afin d'évaluer les objets non autochauffants pour le contrôle de la qualité et l'assurance de la sécurité. Ces dernières années, le domaine de l'apprentissage profond de l'intelligence artificielle a fait des progrès remarquables dans les applications de traitement d'images. Ce domaine a montré sa capacité à surmonter la plupart des inconvénients des autres approches existantes auparavant dans un grand nombre d'applications. Cependant, en raison de l'insuffisance des données d'entraînement, les algorithmes d'apprentissage profond restent encore inexplorés, et seules quelques publications font état de leur application à l'évaluation non destructive de la thermographie (TNDE). Les algorithmes d'apprentissage profond intelligents et hautement automatisés pourraient être couplés à la thermographie infrarouge pour identifier les défauts (dommages) dans les composites, l'acier, etc. avec une confiance et une précision élevée. Parmi les sujets du domaine de recherche TNDE, les techniques d'apprentissage automatique supervisées et non supervisées sont les tâches les plus innovantes et les plus difficiles pour l'analyse de la détection des défauts. Dans ce projet, nous construisons des cadres intégrés pour le traitement des données brutes de la thermographie infrarouge à l'aide d'algorithmes d'apprentissage profond et les points forts des méthodologies proposées sont les suivants: 1. Identification et segmentation automatique des défauts par des algorithmes d'apprentissage profond en thermographie infrarouge. Les réseaux neuronaux convolutifs (CNN) pré-entraînés sont introduits pour capturer les caractéristiques des défauts dans les images thermiques infrarouges afin de mettre en œuvre des modèles basés sur les CNN pour la détection des défauts structurels dans les échantillons composés de matériaux composites (diagnostic des défauts). Plusieurs alternatives de CNNs profonds pour la détection de défauts dans la thermographie infrarouge. Les comparaisons de performance de la détection et de la segmentation automatique des défauts dans la thermographie infrarouge en utilisant différentes méthodes de détection par apprentissage profond : (i) segmentation d'instance (Center-mask ; Mask-RCNN) ; (ii) détection d’objet (Yolo-v3 ; Faster-RCNN) ; (iii) segmentation sémantique (Unet ; Res-unet); 2. Technique d'augmentation des données par la génération de données synthétiques pour réduire le coût des dépenses élevées associées à la collecte de données infrarouges originales dans les composites (composants d'aéronefs.) afin d'enrichir les données de formation pour l'apprentissage des caractéristiques dans TNDE; 3. Le réseau antagoniste génératif (GAN convolutif profond et GAN de Wasserstein) est introduit dans la thermographie infrarouge associée à la thermographie partielle des moindres carrés (PLST) (réseau PLS-GANs) pour l'extraction des caractéristiques visibles des défauts et l'amélioration de la visibilité des défauts pour éliminer le bruit dans la thermographie pulsée; 4. Estimation automatique de la profondeur des défauts (question de la caractérisation) à partir de données infrarouges simulées en utilisant un réseau neuronal récurrent simplifié : Gate Recurrent Unit (GRU) à travers l'apprentissage supervisé par régression. / Non-destructive evaluation (NDE) is a field to identify all types of structural damage in an object of interest without applying any permanent damage and modification. This field has been intensively investigated for many years. The infrared thermography (IR) is one of NDE technology through inspecting, characterize and analyzing defects based on the infrared images (sequences) from the recordation of infrared light emission and reflection to evaluate non-self-heating objects for quality control and safety assurance. In recent years, the deep learning field of artificial intelligence has made remarkable progress in image processing applications. This field has shown its ability to overcome most of the disadvantages in other approaches existing previously in a great number of applications. Whereas due to the insufficient training data, deep learning algorithms still remain unexplored, and only few publications involving the application of it for thermography nondestructive evaluation (TNDE). The intelligent and highly automated deep learning algorithms could be coupled with infrared thermography to identify the defect (damages) in composites, steel, etc. with high confidence and accuracy. Among the topics in the TNDE research field, the supervised and unsupervised machine learning techniques both are the most innovative and challenging tasks for defect detection analysis. In this project, we construct integrated frameworks for processing raw data from infrared thermography using deep learning algorithms and highlight of the methodologies proposed include the following: 1. Automatic defect identification and segmentation by deep learning algorithms in infrared thermography. The pre-trained convolutional neural networks (CNNs) are introduced to capture defect feature in infrared thermal images to implement CNNs based models for the detection of structural defects in samples made of composite materials (fault diagnosis). Several alternatives of deep CNNs for the detection of defects in the Infrared thermography. The comparisons of performance of the automatic defect detection and segmentation in infrared thermography using different deep learning detection methods: (i) instance segmentation (Center-mask; Mask-RCNN); (ii) objective location (Yolo-v3; Faster-RCNN); (iii) semantic segmentation (Unet; Res-unet); 2. Data augmentation technique through synthetic data generation to reduce the cost of high expense associated with the collection of original infrared data in the composites (aircraft components.) to enrich training data for feature learning in TNDE; 3. The generative adversarial network (Deep convolutional GAN and Wasserstein GAN) is introduced to the infrared thermography associated with partial least square thermography (PLST) (PLS-GANs network) for visible feature extraction of defects and enhancement of the visibility of defects to remove noise in Pulsed thermography; 4. Automatic defect depth estimation (Characterization issue) from simulated infrared data using a simplified recurrent neural network: Gate Recurrent Unit (GRU) through the regression supervised learning.

Identiferoai:union.ndltd.org:LAVAL/oai:corpus.ulaval.ca:20.500.11794/70931
Date26 November 2021
CreatorsFang, Qiang
ContributorsMaldague, Xavier
Source SetsUniversité Laval
LanguageEnglish
Detected LanguageFrench
Typethèse de doctorat, COAR1_1::Texte::Thèse::Thèse de doctorat
Format1 ressource en ligne (xxi, 227 pages), application/pdf
Rightshttp://purl.org/coar/access_right/c_abf2

Page generated in 0.0036 seconds