Return to search

Experimental Characterization and Modelling of the Mechanical Behaviour of 3D Printed Honeycomb Core Sandwich Panels

Des panneaux sandwichs thermoplastiques imprimés en 3D avec des cœurs en nid d'abeille sont étudiés afin d'être utilisés dans la conception d'engins d'exploration lunaire. C'est dû à leur rigidité en flexion élevée, leur faible densité et leur basse conductivité thermique. Les matériaux thermoplastiques ne sont pas aussi bien documentés en termes de comportement mécanique que d'autres matériaux. La recherche est donc nécessaire pour prédire le comportement mécanique de structures en composite thermoplastique fabriquées par impression 3D. À cette fin, ce projet avait trois objectifs principaux. Le premier était de caractériser le comportement mécanique d'un polymer thermoplastique (polylactide ou PLA) imprimé en 3D. Le deuxième était de prédire le comportement mécanique de panneaux sandwichs en PLA avec des simulations. Le troisième était de développer un modèle homogénéisé du cœur en 2D pour les simulations à grande échelle. Les spécimens en PLA ont été caractérisées en traction et en compression. Un module d'élasticité en traction de 2,46 ± 0,07 GPa et un module d'élasticité en compression de 2,68 ± 0,04GPa ont été mesurés. Des essais ont également été réalisés pour des panneaux imprimés soumis à des chargements de compression hors-plan, de flexion trois-points et d'indentation. Ces essais ont été ensuite modélisés par éléments finis. Les modèles 3D, constitués d'éléments coques 2D pour modéliser les cellules du cœur et les peaux, ont prédit le module d'élasticité et la contrainte maximale à 10 % près pour la compression et la flexion. Les modes de flambement, cependant, n'ont pas été si bien modélisés par les simulations de compression et d'indentation, ce qui montre une limite de la méthode. Ce modèle a été ensuite utilisé pour déterminer les propriétés élastiques équivalentes du cœur Ces propriétés, ainsi que les propriétés calculées par des méthodes analytiques, ont été appliquées à des modèles 2D représentatifs des panneaux sandwichs. En comparant ces modèles, il a été établi que le comportement linéaire en traction et en compression dans le plan était similaire. En flexion, le modèle qui utilise des propriétés équivalentes obtenues analytiquement prédit à moins de 5 % la rigidité du modèle 3D complet, tandis que le modèle qui utilise des propriétés équivalentes obtenues numériquement était à moins de 15 %. Étant donné qu'un modèle analytique précis ne sera pas disponible pour prédire les propriétés équivalentes pour chaque géométrie de cœur et pour des matériaux non-isotropes, utiliser es propriétés équivalentes du cœur obtenues par éléments finis dans un modèles coques 2D qui représente le panneau sandwich est une méthode valide pour prédire le comportement mécanique d'une structure sandwich. Avec ce modèle premier comme base, les travaux de modélisation s'étendre aux composites thermoplastiques renforcé par des fibres de carbone qui serviraient à concevoir un engin d'exploration lunaire résistant à son environnement. D'autres travaux peuvent également être effectués sur différents panneaux qui, grâce à la flexibilité de l'impression 3D, ont une densité ou une géométrie variable. Ces panneaux sandwichs aideront à optimiser la structure d'un engin d'exploration lunaire capable de survivre à des cycles jour-nuit complets sur la lune. / 3D printed thermoplastic composite sandwich panels with honeycomb cores are being researched as a structural element for lunar rovers. This is for their high flexural rigidity, low density, and low thermal conductivity. However, thermoplastic materials are not aswell-documented in terms of structural behaviour as other commonly-used materials like aluminum. Therefore, work is needed to develop a model for these thermoplastics. To that end, this project had three main objectives. The first was to characterize a 3D printed thermoplastic polymer (polylactic acid or PLA). The second was to establish a model to predict the mechanical behaviour of printed honeycomb core sandwich panels. The third was to develop an equivalent core model for large-scale simulations. Parts made with PLA were characterized in tension and compression. These tests measured an elastic modulus in tension of 2.46 ± 0.07 GPa and an elastic modulus in compression of 2.68 ± 0.04 GPa. Tests were also performed for printed panels undergoing out-of-plane compression, three-point bending, and indentation, which were then simulated. Three-dimensional simulation models, constructed by modelling the core cells and the skins with two-dimensional shell elements, accurately predicted the elastic modulus and maximum stress to within 10% for both the compression and bending simulations. The buckling modes were less accurately modelled for both compression and indentation simulations, which shows the limit of the current method's predictive capabilities. This model was then used to determine the equivalent elastic properties of the honeycomb core. These properties, along with properties calculated analytically, were applied to 2D plate models that represented the sandwich panels. Comparing these models, it was found that the linear behaviour for in-plane tension and compression were very similar. In bending it was found that the core model that used analytically determined equivalent properties predicted within 5 % the rigidity of the full 3D model. The 2D core model that used numerically determined equivalent properties was within 15 %. Given that a precise analytical model is not available for every core geometry and for non-isotropic materials, the utilization of a core with equivalent properties obtained from finite element analysis of a sandwich panel represented by 2D shell elements is a valid method to predict the mechanical behaviour of a sandwich structure. With this model, progress can be made on the production and modelling of reinforced thermoplastic composites for a lunar rover. Further work can also be done on different panels that have variable densities or geometries that change throughout the core. These sandwich panels will help to optimize a rover's structure to be the first to survive full lunar day-night cycles.

Identiferoai:union.ndltd.org:LAVAL/oai:corpus.ulaval.ca:20.500.11794/71018
Date20 December 2021
CreatorsSura, Anton
ContributorsDano, Marie-Laure
Source SetsUniversité Laval
LanguageEnglish
Detected LanguageFrench
Typemémoire de maîtrise, COAR1_1::Texte::Thèse::Mémoire de maîtrise
Format1 ressource en ligne (x, 66 pages), application/pdf
Rightshttp://purl.org/coar/access_right/c_abf2

Page generated in 0.003 seconds