Return to search

Numerical Simulation of Cold Front-Related Hydrodynamics of Wax Lake Delta

This study applies a three-dimensional numerical model ECOM-si to simulate the circulation in the Wax Lake delta under winter cold front conditions. This model uses real topography and bathymetry of the area to reproduce tides and the circulation between December 2012 and January 2013, which captures a total of seven cold front passages.
The model results demonstrate that the circulation in the Wax Lake delta area is significantly affected by the winter cold fronts. The major findings are: (1) Water fluxes in the delta distributary network are not solely propagated within the channels but also between the channels, indicating inundation process by water intrusion onto the saltmarshes, which accounts for ~25% of water flux. (2). The current flows follow the wind direction change. Along-channel current dominates while cross-channel water transport occurs at the southwester lobe during post-frontal passage. The long-term impact on sediment transport will be the lobe shift to southeastward and thus lead to a significant change in geomorphology in the delta. Water intrusion and a temporary reverse flow are observed from model results in the delta channel tip during prefrontal passage. (3) The cold-front-induced flushing event lasts 41-185 hours that flushed out 32% to 76% of total waters by seven cold front events. (4). Subtidal energy accounts for over 45% of total energy while tidal energy contributes to less than 25%. (5) Cold front-induced wind is the most important factor and dominates the hydrodynamic circulations of the Wax Lake delta in winter.

Identiferoai:union.ndltd.org:LSU/oai:etd.lsu.edu:etd-05132015-081026
Date28 May 2015
CreatorsZhang, Qian
ContributorsSaunders, Rebecca, Li, Chunyan, Zhou, Kemin, Ates, Sibel
PublisherLSU
Source SetsLouisiana State University
LanguageEnglish
Detected LanguageEnglish
Typetext
Formatapplication/pdf
Sourcehttp://etd.lsu.edu/docs/available/etd-05132015-081026/
Rightsrestricted, I hereby certify that, if appropriate, I have obtained and attached herein a written permission statement from the owner(s) of each third party copyrighted matter to be included in my thesis, dissertation, or project report, allowing distribution as specified below. I certify that the version I submitted is the same as that approved by my advisory committee. I hereby grant to LSU or its agents the non-exclusive license to archive and make accessible, under the conditions specified below and in appropriate University policies, my thesis, dissertation, or project report in whole or in part in all forms of media, now or hereafter known. I retain all other ownership rights to the copyright of the thesis, dissertation or project report. I also retain the right to use in future works (such as articles or books) all or part of this thesis, dissertation, or project report.

Page generated in 0.002 seconds