Development of Watershed-Based Modeling Approach to Pollution Source Identification

Identification of unknown pollution sources is essential to environmental protection and emergency response. A review of recent publications in source identification revealed that there are very limited numbers of research in modeling methods for rivers. Whats more, the majority of these attempts were to find the source strength and release time, while only a few of them discussed how to identify source locations. Comparisons of these works indicated that a combination of biological, mathematical and geographical method could effectively identify unknown source area(s), which was a more practical trial in a watershed. This thesis presents a watershed-based modeling approach to identification of critical source area. The new approach involves (1) identification of pollution source in rivers using a moment-based method and (2) identification of critical source area in a watershed using a hydrograph-based method and high-resolution radar rainfall data. In terms of the moment-based method, the first two moment equations are derived through the Laplace transform of the Variable Residence Time (VART) model. The first moment is used to determine the source location, while the second moment can be employed to estimate the total mass of released pollutant. The two moment equations are tested using conservative tracer injection data collected from 23 reaches of five rivers in Louisiana, USA, ranging from about 3km to 300 km. Results showed that the first moment equation is able to predict the pollution source location with a percent error of less than 18% in general. The predicted total mass has a larger percent error, but a correction could be added to reduce the error significantly. Additionally, the moment-based method can be applied to identify the source location of reactive pollutants, provided that the special and temporal concentrations are recorded in downstream stations. In terms of the hydrograph-based method, observed hydrographs corresponding to pollution events can be utilized to identify the critical source area in a watershed. The time of concentration could provide a unique fingerprint for each subbasin in the watershed. The observation of abnormally high bacterial levels along with high resolution radar rainfall data can be used to match the most possible storm events and thus the critical source area.

Identiferoai:union.ndltd.org:LSU/oai:etd.lsu.edu:etd-07082013-160959
Date15 July 2013
CreatorsTong, Yangbin
ContributorsSmith, Heather, Tsai, Frank, Deng, Zhi-Qiang
PublisherLSU
Source SetsLouisiana State University
LanguageEnglish
Detected LanguageEnglish
Typetext
Formatapplication/pdf
Sourcehttp://etd.lsu.edu/docs/available/etd-07082013-160959/
Rightsunrestricted, I hereby certify that, if appropriate, I have obtained and attached herein a written permission statement from the owner(s) of each third party copyrighted matter to be included in my thesis, dissertation, or project report, allowing distribution as specified below. I certify that the version I submitted is the same as that approved by my advisory committee. I hereby grant to LSU or its agents the non-exclusive license to archive and make accessible, under the conditions specified below and in appropriate University policies, my thesis, dissertation, or project report in whole or in part in all forms of media, now or hereafter known. I retain all other ownership rights to the copyright of the thesis, dissertation or project report. I also retain the right to use in future works (such as articles or books) all or part of this thesis, dissertation, or project report.

Page generated in 0.0016 seconds