Thermal Stress Analysis of Jointed Plain Concrete Pavements Containing Fly Ash and Slag

With the current demand for Portland cement concrete (PCC) sustainability, supplementary cementitious materials (SCMs) are used in concrete mixtures. The SCMs positively impact the environmental and economic aspects of concrete mixtures and improve the mixture properties in both fresh and hardened concrete. In this research, one control and twenty-four ternary mixtures, with various combinations of fly ashes (Class C and F), slags (Grade 100 and 120), and Portland cement were fabricated. The thermal properties (coefficient of thermal expansion (CTE), thermal conductivity, and heat capacity) and mechanical properties of the selected ternary mixtures were measured at various ages.
Temperature gradients were measured using a concrete pavement (10-in. thick) to characterize daily and seasonal temperature variations through the slab thickness. The correlation between air temperature and surface temperature, as well as air temperature and temperature difference of the slab thickness, were established based on the measured temperature gradients in the concrete pavement. The enhanced integrated climatic model (EICM) analysis was conducted, using measured material properties and climatic conditions. A local calibration of EICM was performed by comparing EICM-predicted temperature gradients to field measurement. It was concluded that the surface temperature is suitable to accurately predict temperature gradients in EICM.
A thermal stress analysis of the ternary mixtures was conducted to calculate the critical tensile stress on the PCC pavements by means of the measured mechanical properties, nonlinear temperature gradients obtained from EICM, and CTE gradients throughout the slab thickness. The ratios of tensile stress-to-strength at the critical state of concrete pavements were estimated as well, in order to investigate the vulnerability of ternary mixtures to tensile stress. The ratio of tensile stress-to-strength shows that all the ternary mixtures, inclusive of the replacement of 30 % slag with 20 % fly ashes, 30 % slag with 30 % fly ashes, and 50 % slag with 20 % fly ashes (both Class C and F), do not exceed 100 % tensile stress-to-strength ratio at all ages. These combinations may be considered as the limitation of ternary mixture replacement with slags and fly ashes.

Identiferoai:union.ndltd.org:LSU/oai:etd.lsu.edu:etd-07112012-151711
Date12 July 2012
CreatorsChung, Yoonseok
ContributorsKutter, Thomas, Elseifi, Mostafa, Mohammad, Louay, Wilmot, Chester, Shin, Hak-Chul
PublisherLSU
Source SetsLouisiana State University
LanguageEnglish
Detected LanguageEnglish
Typetext
Formatapplication/pdf
Sourcehttp://etd.lsu.edu/docs/available/etd-07112012-151711/
Rightsunrestricted, I hereby certify that, if appropriate, I have obtained and attached herein a written permission statement from the owner(s) of each third party copyrighted matter to be included in my thesis, dissertation, or project report, allowing distribution as specified below. I certify that the version I submitted is the same as that approved by my advisory committee. I hereby grant to LSU or its agents the non-exclusive license to archive and make accessible, under the conditions specified below and in appropriate University policies, my thesis, dissertation, or project report in whole or in part in all forms of media, now or hereafter known. I retain all other ownership rights to the copyright of the thesis, dissertation or project report. I also retain the right to use in future works (such as articles or books) all or part of this thesis, dissertation, or project report.

Page generated in 0.0016 seconds