Return to search

Non-destructive Examination Of Stone Masonry Historic Structures-quantitative Ir Thermography And Ultrasonic Velocity

The in-situ examination of historical structures for diagnostic and monitoring
purposes is a troublesome work that necessitates the use of non-destructive
investigation (NDT) techniques. The methods of quantitative infrared
thermography (QIRT) and ultrasonic testing have distinct importance in this
regard. The key concern of the study was developing the in-situ use of QIRT for
assessment of stone masonry wall sections having different sublayer(s) and
failures. For that purpose, the non-destructive in-situ survey composed of QIRT
and ultrasonic testing was conducted on a 16th century monument, Cenabi Ahmet
PaSa Camisi, suffering from structural cracks, dampness problems and materials
deterioration. The combined use of these two methods allowed to define the
thermal inertia characteristics of structural cracks in relation to their depth. The
temperature evolution in time during the controlled heating and cooling process
was deployed for the cracks/defects inspection. The superficial and deep cracks
were found to have different thermal responses to exposed conditions which made
them easily distinguishable by QIRT analyses. The depth of cracks was precisely
estimated by the in-situ ultrasonic testing data taken in the indirect transmission
mode. The inherently good thermal resistivity of the wall structure was found to
have failed due to entrapped moisture resulting from incompatible recent plaster
repairs. The IRT survey allowed to detect the wall surfaces with different sublayer
configurations due to their different thermal inertia characteristics. The knowledge
and experience gained on the experimental set-ups and analytic methods were
useful for the improvement of in-situ applications of QIRT and ultrasonic testing.

Identiferoai:union.ndltd.org:METU/oai:etd.lib.metu.edu.tr:http://etd.lib.metu.edu.tr/upload/12611673/index.pdf
Date01 March 2010
CreatorsAkevren, Selen
ContributorsTavukcuoglu, Ayse
PublisherMETU
Source SetsMiddle East Technical Univ.
LanguageEnglish
Detected LanguageEnglish
TypeM.S. Thesis
Formattext/pdf
RightsTo liberate the content for public access

Page generated in 0.0035 seconds