Return to search

A Branch And Bound Algorithm For Resource Leveling Problem

Resource Leveling Problem (RLP) aims to minimize undesired fluctuations in resource distribution curves which cause several practical problems. Many studies conclude that commercial project management software packages can not effectively deal with RLP. In this study a branch and bound algorithm is presented for solving RLP for single and multi resource, small size networks. The algorithm adopts a depth-first strategy and stores start times of non-critical activities in the nodes of the search tree. Optimal resource distributions for 4 different types of resource leveling metrics can be obtained via the developed procedure. To prune more of the search tree and thereby reduce the computation time, several lower bound calculation methods are employed. Experiment results from 20 problems showed that the suggested algorithm can successfully locate optimal solutions for networks with up to 20 activities.

The algorithm presented in this study contributes to the literature in two points. First, the new lower bound improvement method (maximum allowable daily resources method) introduced in this study reduces computation time required for achieving the optimal solution for the RLP. Second, optimal solutions of several small sized problems have been obtained by the algorithm for some traditional and recently suggested leveling metrics. Among these metrics, Resource Idle Day (RID) has been utilized in an exact method for the first time. All these solutions may form a basis for performance evaluation of heuristic and metaheuristic procedures for the RLP. Limitations of the developed branch and bound procedure are discussed and possible further improvements are suggested.

Identiferoai:union.ndltd.org:METU/oai:etd.lib.metu.edu.tr:http://etd.lib.metu.edu.tr/upload/12612259/index.pdf
Date01 August 2010
CreatorsMutlu, Mustafa Cagdas
ContributorsSonmez, Rifat
PublisherMETU
Source SetsMiddle East Technical Univ.
LanguageEnglish
Detected LanguageEnglish
TypeM.S. Thesis
Formattext/pdf
RightsTo liberate the content for public access

Page generated in 0.0017 seconds