Return to search

Simulation Of Biped Locomotion Of Humanoid Robots In 3d Space

The main goal of this thesis is to simulate the response of a humanoid robot using a specified control algorithm which can achieve a sustainable biped locomotion with 4 basic locomotion phases. Basic parts for the body of the humanoid robot model are shaped according to the specified basic physical parameters and assumed kinematic model.
The kinematic model, which does not change according to locomotion phases and consists of 27 segments including 14 virtual segments, provides a humanoid robot model with 26 degrees of freedom (DOF). Corresponding kinematic relations for the robot model are obtained by recursive formulations. Derivation of dynamic equations is carried out by the Newton-Euler formulation. A trajectory definition algorithm which defines positions, orientations, translational and angular velocities for the hip and its mass center, toe part of the foot and its toe point is created. A control strategy based on predictive optimum command acceleration calculations and computed torque control method is implemented.
The simulation is executed in Simulink and the visualization of the simulation is established in a virtual environment by Virtual Reality Toolbox of MATLAB. The simulation results and the user defined reference input are displayed simultaneously in the virtual environment.
In this study, a simulation environment for the biped locomotion of humanoid robots is created. By the help of this thesis, the user can test various control strategies by modifying the modular structure of the simulation and acquire necessary information for the preliminary design study of a humanoid robot construction.

Identiferoai:union.ndltd.org:METU/oai:etd.lib.metu.edu.tr:http://etd.lib.metu.edu.tr/upload/12612470/index.pdf
Date01 October 2010
CreatorsAkalin, Gokcan
ContributorsOzgoren, Kemal
PublisherMETU
Source SetsMiddle East Technical Univ.
LanguageEnglish
Detected LanguageEnglish
TypeM.S. Thesis
Formattext/pdf
RightsTo liberate the content for public access

Page generated in 0.0027 seconds