Return to search

Real-time Arbitrary View Rendering From Stereo Video And Time-of-flight Camera

Generating in-between images from multiple views of a scene is a crucial task for both computer vision and computer graphics fields. Photorealistic rendering, 3DTV and robot navigation are some of many applications which benefit from arbitrary view synthesis, if it is achieved in real-time. Most modern commodity computer architectures include programmable processing chips, called Graphics Processing Units (GPU), which are specialized in rendering computer generated images. These devices excel in achieving high computation power by processing arrays of data in parallel, which make them ideal for real-time computer vision applications. This thesis focuses on an arbitrary view rendering algorithm by using two high resolution color cameras along with a single low resolution time-of-flight depth camera and matching the programming paradigms of the GPUs to achieve real-time processing rates. Proposed method is divided into two stages. Depth estimation through fusion of stereo vision and time-of-flight measurements forms the data acquisition stage and second stage is intermediate view rendering from 3D representations of scenes. Ideas presented are examined in a common experimental framework and practical results attained are put forward. Based on the experimental results, it could be concluded that it is possible to realize content production and display stages of a free-viewpoint system in real-time by using only low cost commodity computing devices.

Identiferoai:union.ndltd.org:METU/oai:etd.lib.metu.edu.tr:http://etd.lib.metu.edu.tr/upload/12612801/index.pdf
Date01 January 2011
CreatorsAtes, Tugrul Kagan
ContributorsAlatan, A. Aydin
PublisherMETU
Source SetsMiddle East Technical Univ.
LanguageEnglish
Detected LanguageEnglish
TypeM.S. Thesis
Formattext/pdf
RightsTo liberate the content for public access

Page generated in 0.0016 seconds