Return to search

Synthesis Of Macromolecular Catalyst Systems And Applications

SYNTHESIS OF MACROMOLECULAR CATALYST SYSTEMS
AND
APPLICATIONS



Oguzkaya, Funda
PhD., Department of Chemistry
Supervisor: Prof. Dr. Cihangir Tanyeli

September 2011, 144 pages

The thesis mainly proposed to design macromolecular catalyst systems. Such catalysts should follow the way of &quot / Green Chemistry&quot / with including no metallic ions and have also the ability of reusability. Hence, nitroxide chemistry was chosen as the key point. Catalysts were synthesized with surely including TEMPO as the functional part as the most preferable nitroxide derivative. As a skeleton, norbornene was chosen firstly. Following obtaining 3-(methoxycarbonyl) bicyclo[2.2.1]hept-5-ene-2-carboxylic acid (49), 4-aminoTEMPO was attempted to be inserted in the structure. In this case, 4-aminoTEMPO was preferred as a TEMPO derivative so as to include reactive amine functional group. As a result, two different monomers were obtained. Then, Ring Opening Metathesis Polymerization via first generation Grubbs catalyst was adjusted to reach target macromolecules. Furthermore, as a second type skeleton for the catalyst, Thiophene-Pyrrole-Thiophene (SNS) structure was chosen, since these well-known structures have the ability to polymerize easily. Anelli Oxidation protocol including corresponding catalysts in combination with NaOCl+NaHCO3 (pH 9.1) and KBr resulting in remarkable high activity with low catalyst concentrations typically 1 mol % was chosen for the oxidation of alcohols so as to reach to target aldehydes and ketones. Investigation of other applicable areas via collaborative studies was thought to open the way of electrochromic and biosensor studies as the different points of view. Electropolymerization was performed in a three-electrode cell consisting of an Indium Tin Oxide coated glass slide (ITO) as the working electrode, platinum wire as the counter electrode and Ag wire as the pseudo reference electrode. As the biosensor part, glucose oxidase (GOx) was used as the model enzyme for glucose oxidation in the presence of molecular oxygen. Poly-SNS-based carboxylic acid served as an excellent immobilization matrix for glucose sensing.

Key words: TEMPO, Anelli Oxidation

Identiferoai:union.ndltd.org:METU/oai:etd.lib.metu.edu.tr:http://etd.lib.metu.edu.tr/upload/12613565/index.pdf
Date01 September 2011
CreatorsOguzkaya, Funda
ContributorsTanyeli, Cihangir
PublisherMETU
Source SetsMiddle East Technical Univ.
LanguageEnglish
Detected LanguageEnglish
TypePh.D. Thesis
Formattext/pdf
RightsTo liberate the content for METU campus

Page generated in 0.0021 seconds