Return to search

Surface Functionalization Of Sba - 15 Particles For Amoxicillin Delivery

There are several studies in order to control drug delivery, decrease the toxicity of drugs and
also for novel biomedical applications. It is necessary to be able to control the release of the
drug within the body by using drug delivery systems. Mesoporous silica compounds have
only been discovered twenty years ago and they have already attracted many researchers to
study these materials for several applications. SBA-15 particles have a highly ordered
regular structure and are a good matrix for guest-host applications. The aim of this study is to
be able to address whether the surface functionalization of SBA-15 samples would improve
the loading of a drug into these particles. The synthesized SBA-15 particles were surface
functionalized by post - grafting synthesis method in order to be used as carrier materials for
drug delivery. Amoxicillin was used as a model drug. These mesoporous materials have been
characterized using X-ray diffraction (XRD), small-angle X-ray spectroscopy (SAXS), fourier-transform infrared spectroscopy (FTIR), transmission electron microscopy (TEM),
N2 adsorption/ desorption, solid-state silicon nuclear magnetic resonance (Si-NMR), high-performance
liquid chromatography (HPLC), ultra-violet (UV) spectroscopy, elemental and
thermo gravimetric analysis (TGA). The effect of concentration difference and the type of
alkoxysilanes used for the functionalization have been discussed in terms of loading
amoxicillin and controlling the delivery. Drug delivery systems have many further
applications that still need to be investigated in areas such as neurosciences, cancer and
biomedical engineering.

Identiferoai:union.ndltd.org:METU/oai:etd.lib.metu.edu.tr:http://etd.lib.metu.edu.tr/upload/12613801/index.pdf
Date01 September 2011
CreatorsSevimli, Filiz F.
ContributorsYilmaz, Aysen
PublisherMETU
Source SetsMiddle East Technical Univ.
LanguageEnglish
Detected LanguageEnglish
TypeM.S. Thesis
Formattext/pdf
RightsTo liberate the content for public access

Page generated in 0.0131 seconds