Return to search

Improved Torque And Speed Control Performance In A Vector-controlled Pwm-vsi Fed Surface-mounted Pmsm Drive With Conventional P-i Controllers

In this thesis, high performance torque and speed control for a surface-mounted permanent magnet synchronous machine (PMSM) is designed, simulated and implemented. A three-phase two-level pulse width modulation voltage-source inverter (PWM-VSI) with power MOSFETs is used to feed the PMSM.
The study has three objectives. The first is to compensate the voltage disturbance caused by nonideal characteristics of the voltage-source inverter (VSI). The second is to decouple the coupled variables in the synchronous reference frame model of the PMSM. The last is to design a load torque estimator in order to increase the disturbance rejection capability of the speed control. The angular acceleration required for load torque estimation is extracted through a Kalman filter from noisy velocity measurements.
Proposed methods for improved torque and speed control performance are verified through simulations and experimental tests. The drive system is modeled in Matlab/Simulink, and control algorithms are developed based on this model. The experimental drive system comprises a three-phase VSI and a 385 W surface-mounted PMSM. Control algorithms developed in the study have been implemented in a digital signal processor (DSP) board and tested comprehensively. With the use of the proposed methods, a considerable improvement of torque and speed control performance has been achieved.

Identiferoai:union.ndltd.org:METU/oai:etd.lib.metu.edu.tr:http://etd.lib.metu.edu.tr/upload/12614294/index.pdf
Date01 April 2012
CreatorsBuyukkeles, Umit
ContributorsErsak, Aydin
PublisherMETU
Source SetsMiddle East Technical Univ.
LanguageEnglish
Detected LanguageEnglish
TypeM.S. Thesis
Formattext/pdf
RightsTo liberate the content for METU campus

Page generated in 0.0238 seconds