Return to search

Bioactive Surface Design Based On Conducting Polymers And Applications To Biosensors

ABSTRACT


BIOACTIVE SURFACE DESIGN BASED ON CONDUCTING POLYMERS AND
APPLICATIONS TO BIOSENSORS

Ekiz, Fulya
M. Sc., Department of Biotechnology
Supervisor: Prof. Dr. Levent Toppare
Co-Supervisor: Prof. Dr. Suna Timur


June 2012, 88 pages

An underlying idea of joining the recognition features of biological macromolecules
to the sensitivity of electrochemical devices has brought the concept of biosensors as
remarkable analytical tools for monitoring desired analytes in different technological
areas. Over other methods, biosensors have some advantages including high
selectivity, sensitivity, simplicity and this leads to solutions for some problems met
in the measurement of some analytes. In this context, conducting polymers are
excellent alternatives with their biocompatibility and ease of applicability for an
efficient immobilization of biomolecules in preparing biosensors. Using several
materials and arranging the surface properties of the electrodes, more efficient and
seminal designs can be achieved. In this thesis, it is aimed to create new direct
biosensors systems for the detection of several analytes such as glucose and
pesticides thought to be harmful to the environment. Recently synthesized
conducting polymers (polyTBT) / (poly(2-dodecyl-4,7-di(thiophen-2-yl)-2H-benzo[
d][1,2,3]triazole) and (poly(TBT
6
-NH2
) / poly(6-(4,7-di(thiophen-2-yl)-2H-benzo[d][1,2,3]triazol-2-yl)hexan-1-amine) were utilized as a matrices for
biomolecule immobilization. After successful electrochemical deposition the
polymers on the graphite electrode surfaces, immobilization of glucose oxidase
(GOx) and choline oxidase (ChO) were carried out. Amperometric measurements
were recorded by monitoring oxygen consumption in the presence of substrates at -0.7 V. The optimized biosensors showed a very good linearity with rapid response
times and low detection limits (LOD) to glucose and choline. Also, kinetic
parameters, operational and storage stabilities were determined. Finally, designed
biosensor systems were applied for glucose and pesticide detection in different
media.

Identiferoai:union.ndltd.org:METU/oai:etd.lib.metu.edu.tr:http://etd.lib.metu.edu.tr/upload/12614390/index.pdf
Date01 June 2012
CreatorsEkiz, Fulya
ContributorsToppare, Levent
PublisherMETU
Source SetsMiddle East Technical Univ.
LanguageEnglish
Detected LanguageEnglish
TypeM.S. Thesis
Formattext/pdf
RightsAccess forbidden for 1 year

Page generated in 0.0023 seconds