Return to search

Additives For Photodegradable Polyethylene

Polyethylene (PE) is one of the most popular polymers used in daily life. However, saturated hydrocarbons cannot absorb the energy of light reaching to earth, so degradation process is rather slow which in return cause disposal problems. On the other hand, it was observed that in presence of oxygen and impurities in the polymer matrix, degradation can be rendered to shorter time intervals. This study covers investigation of effect of three different additives in UV induced oxidative degradation of polyethylene.

In this work vanadium (III) acetylacetonate, serpentine and Cloisite 30B were used as additives both together and alone to follow photodegradation of polyethylene. Amount of vanadium (III) acetylacetonate was kept constant at 0.2 wt%, while serpentine and Cloisite 30B were used between 1 and 4 wt%.
All compositions were prepared by using Brabender Torque Rheometer, and shaped as thin films by compression molding. Samples were irradiated by UV light up to 500 hours. Mechanical and spectroscopic measurements were carried out in certain time intervals to monitor the degradation.

It can be concluded that all combinations of three additives showed the fastest degradation behavior compared to pure PE. In the absence of vanadium (III) acetylacetonate the degradation was slowed and fluctuations were observed in the residual percentage strain at break values. There was not a significant change in tensile strength of all samples. Carbonyl index values followed by FTIR were always in increasing manner. Thermal properties were also investigated by DSC Thermograms and they did not change significantly.

Identiferoai:union.ndltd.org:METU/oai:etd.lib.metu.edu.tr:http://etd.lib.metu.edu.tr/upload/12614537/index.pdf
Date01 July 2012
CreatorsOluz, Zehra
ContributorsTincer, Teoman
PublisherMETU
Source SetsMiddle East Technical Univ.
LanguageEnglish
Detected LanguageEnglish
TypeM.S. Thesis
Formattext/pdf
RightsAccess forbidden for 1 year

Page generated in 0.0017 seconds