Return to search

Bioactive Agent Carrying Plga Nanoparticles In Thetreatment Of Skin Diseases

The aim of this study was to develop drug delivery system based on poly(lactic acid-co-glycolic acid) (PLGA) nanoparticles (NPs) to achieve personalized treatment of selected skin disorders, like photo-aging, psoriasis and
atopic dermatitis. Dead Sea Water (DSW) and Retinyl Palmitate (RP) were used as active agents and they were loaded in PLGA NPs prepared either as spheres or capsules by o/w or w/o/w methods. MgCl2 and bovine serum albumin (BSA)
served as model active compounds. The diameter of the NPs was found to be in the range of 280 - 550 nm. The entrapment efficiency (E.E.) was less than 1% for RP, DSW and MgCl2, and 41% for BSA. Loading of Cl- together with BSA doubled the E.E. value of Cl- . In situ release studies showed a burst in the first day and more than 85% of
the chloride content was released within a week. When the macromolecule BSA was encapsulated, a much slower and triphasic release profile was observed which continued for up to 80 days. In vitro tests were performed using L929 fibroblast cells. Results of MTT
(3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyl tetrazolium bromide) test revealed that none of the NPs were cytotoxic. Additionally, all particles were hemocompatible
with hemolytic activity &lt / 1.5%. L929 fibroblast and Saos 2 human osteosarcoma cells were used to study the uptake of NPs by the cells. Particles accumulate near the nucleus.
The characterization and cell viability tests, and drug release behavior indicate the suitability of these NPs for further testing to develop a patient specific skin diseases treatment approach.

Identiferoai:union.ndltd.org:METU/oai:etd.lib.metu.edu.tr:http://etd.lib.metu.edu.tr/upload/12614551/index.pdf
Date01 July 2012
CreatorsKucukturhan, Aysu
ContributorsHasirci, Nesrin Prof. Dr.
PublisherMETU
Source SetsMiddle East Technical Univ.
LanguageEnglish
Detected LanguageEnglish
TypeM.S. Thesis
Formattext/pdf
RightsAccess forbidden for 1 year

Page generated in 0.0025 seconds