Return to search

Robust Set-valued Estimation And Its Application To In-flight Alignment Of Sins

In this thesis, robust set-valued estimation is studied and its application to in-flight alignment of strapdown inertial navigation systems (SINS) with large heading uncertainty is performed.
It is known that the performance of the Kalman filter is vulnerable to modeling errors. One of the estimation methods, which are robust against modeling errors, is robust set-valued estimation. In this approach, the filter calculates the set of all possible states, which are consistent with uncertainty inputs satisfying an integral quadratic constraint (IQC) for given measured system outputs. In this thesis, robust set-valued filter with deterministic input is derived.
In-flight alignment of SINS with Kalman filtering using external measurements is a widely used technique to eliminate the initial errors. However, if the initial errors are large then the performance of standard Kalman filtering technique is degraded due to modeling error caused by linearization process. To solve this problem, a novel linear norm-bounded uncertain error model is proposed where the remaining second orders terms due to linearization process are considered as norm-bounded uncertainty regarding only the heading error is large. Using the uncertain error model, the robust set-valued filter is applied to in-flight alignment problem. The comparison of the Kalman filter and the robust filter is done on a simulated trajectory and a real-time data. The simulation results show that the modeling errors can be compensated to some extent in Kalman filter by increasing the process noise covariance matrix. However, for very large initial heading errors, the proposed method outperforms the Kalman filter.

Identiferoai:union.ndltd.org:METU/oai:etd.lib.metu.edu.tr:http://etd.lib.metu.edu.tr/upload/2/12606383/index.pdf
Date01 August 2005
CreatorsSeymen, Niyazi Burak
ContributorsDemirekler, Mubeccel
PublisherMETU
Source SetsMiddle East Technical Univ.
LanguageEnglish
Detected LanguageEnglish
TypeM.S. Thesis
Formattext/pdf
RightsTo liberate the content for METU campus

Page generated in 0.0022 seconds