Return to search

Development Of An Incompressible, Laminar Flowsolver Based On Least Squares Spectral Element Methodwith P-type Adaptive Refinement Capabilities

The aim of this thesis is to develop a flow solver that has the ability to obtain an accurate numerical solution fast and efficiently with minimum user intervention. In this study, a two-dimensional viscous, laminar, incompressible flow solver based on Least-Squares Spectral Element Method (LSSEM) is developed. The LSSEM flow solver can work on hp-type nonconforming grids and can perform p-type adaptive refinement. Several benchmark problems are solved in order to validate the solver and successful results are obtained. In particular, it is demonstrated that p-type adaptive refinement on hp-type non-conforming grids can be used to improve the quality of the solution. Moreover, it is found that mass conservation performance of LSSEM can be enhanced by using p-type adaptive refinement strategies while keeping computational costs reasonable.

Identiferoai:union.ndltd.org:METU/oai:etd.lib.metu.edu.tr:http://etd.lib.metu.edu.tr/upload/3/12612096/index.pdf
Date01 June 2010
CreatorsOzcelikkale, Altug
ContributorsSert, Cuneyt
PublisherMETU
Source SetsMiddle East Technical Univ.
LanguageEnglish
Detected LanguageEnglish
TypeM.S. Thesis
Formattext/pdf
RightsTo liberate the content for public access

Page generated in 0.0018 seconds