Thesis: M.B.A., Massachusetts Institute of Technology, Sloan School of Management, in conjunction with the Leaders for Global Operations Program at MIT, 2018. / Thesis: S.M., Massachusetts Institute of Technology, Department of Mechanical Engineering, in conjunction with the Leaders for Global Operations Program at MIT, 2018. / Cataloged from PDF version of thesis. / Includes bibliographical references (page 49). / As Amazon continues to experience a rapid growth in its e-commerce business, fulfillment efficiency needs to through safe implementation of advanced technology to create a better customer experience. Amazon has heavily invested in automating its outbound product sortation process that merges picked items but has yet to develop automation for multi-item packing. Individual item manipulation has been proven very challenging to automate due to the over 500 million unique products offered. This thesis proposes a container manipulation solution that integrates industrial robotics and other equipment with upstream sortation technology to automate the packing process. A physical prototype was built to test the concept and measure proficiency in critical quality metrics such as item accuracy, product damage, and packing density/orientation. Additionally, an operational simulation for the system was developed to determine the optimal capacity sizing for the integrated sortation and packing system. Lastly, sensitivity analysis on a financial model was performed to optimize for the net present value (NPV) and payback period. After a series of controlled experiments and process improvements, the prototype produced promising results, given the rudimentary nature of the prototype. The system generated item accuracy defects at 2%, product damage defects at 2% and packing orientation defects at 17%. While these results are not adequate to be used in live operation, a development path to acceptable performance appears attainable. Furthermore, implementation of the technology would generate approximately and $100M in NPV across the global fulfillment network. / by Andrew Walker. / M.B.A. / S.M.
Identifer | oai:union.ndltd.org:MIT/oai:dspace.mit.edu:1721.1/117954 |
Date | January 2018 |
Creators | Walker, Andrew (Andrew Millington) |
Contributors | Nikolaos Trichakis and Maria Yang., Leaders for Global Operations Program., Leaders for Global Operations Program at MIT, Massachusetts Institute of Technology. Department of Mechanical Engineering, Sloan School of Management |
Publisher | Massachusetts Institute of Technology |
Source Sets | M.I.T. Theses and Dissertation |
Language | English |
Detected Language | English |
Type | Thesis |
Format | 49 pages, application/pdf |
Rights | MIT theses are protected by copyright. They may be viewed, downloaded, or printed from this source but further reproduction or distribution in any format is prohibited without written permission., http://dspace.mit.edu/handle/1721.1/7582 |
Page generated in 0.002 seconds