Virtual long baseline (VLBL) autonomous underwater vehicle navigation using a single transponder / VLBL autonomous underwater vehicle navigation using a single transponder

This electronic version was submitted by the student author. The certified thesis is available in the Institute Archives and Special Collections. / Thesis (Nav. E. and S.M. in Ocean Systems Management)--Massachusetts Institute of Technology, Dept. of Mechanical Engineering, 2006. / Includes bibliographical references (leaves 73-75). / (cont.) Therefore, accurate underwater navigation using a single location transponder would provide dramatic time and cost savings for underwater vehicle operations. This thesis presents a simulation of autonomous underwater vehicle navigation using a single transponder to create a virtual long baseline (VLBL). Similarly to LBL systems, ranges in a VLBL are calculated between the vehicle and the transponder, but the vehicle position is determined by advancing multiple ranges from a single transponder along the vehicles dead reckoning track. Vehicle position is then triangulated using these successive ranges in a manner analogous to a 'running fix' in surface ship navigation. Navigation data from bottom survey operations of an underwater vehicle called the Autonomous Benthic Explorer (ABE) were used in the simulation. The results of this simulation are presented along with a discussion of the benefits, limitations, and implications of its extension to real-time operations. A cost savings analysis was also conducted based both on the idea that a single surveyed beacon could be deployed for underwater navigation and on the further extension of this problem that the 'single beacon' used for navigation could be located on the ship itself. / Acoustic long baseline (LBL) navigation systems are often used for precision underwater vehicle navigation. LBL systems triangulate the position of the vehicle by calculating the range between the vehicle and multiple transponders with known locations. A typical LBL system incorporates between two and twelve acoustic transponders. The vehicle interrogates the beacons acoustically, calculates the range to each beacon based on the roundtrip travel time of the signal, and uses the range data from two or more of the acoustic transponders at any point in time to determine its position. However, for accurate underwater navigation, the location of each deployed transponder in the array must be precisely surveyed prior to conducting autonomous vehicle operations. Surveying the location of the transponders is a costly and time-consuming process, especially in cases where underwater vehicles are used in mapping operations covering a number of different locations in succession. During these extended mapping operations, the transponders need to be deployed, surveyed, and retrieved in each location, adding significant time and, consequently, significant cost to any operation. / by Cara E.G. LaPointe. / Nav.E.and S.M.in Ocean Systems Management

Identiferoai:union.ndltd.org:MIT/oai:dspace.mit.edu:1721.1/35310
Date January 2006
CreatorsLaPointe, Cara Elizabeth Grupe
ContributorsDana Yoerger., Massachusetts Institute of Technology. Dept. of Mechanical Engineering., Massachusetts Institute of Technology. Dept. of Mechanical Engineering.
PublisherMassachusetts Institute of Technology
Source SetsM.I.T. Theses and Dissertation
LanguageEnglish
Detected LanguageEnglish
TypeThesis
Format1822950 bytes, 1822613 bytes, 94 leaves, application/pdf, application/pdf, application/pdf
RightsM.I.T. theses are protected by copyright. They may be viewed from this source for any purpose, but reproduction or distribution in any format is prohibited without written permission. See provided URL for inquiries about permission., http://dspace.mit.edu/handle/1721.1/7582

Page generated in 0.002 seconds