Return to search

Molecular systems analysis of a cis-encoded epigenetic switch

Thesis (Ph. D.)--Massachusetts Institute of Technology, Computational and Systems Biology Program, 2011. / Cataloged from PDF version of thesis. / Includes bibliographical references. / An ability to control the degree of heterogeneity in cellular phenotypes may be important for cell populations to survive uncertain and ever-changing environments or make cell-fate decisions in response to external stimuli. Cells may control the degree of gene expression heterogeneity and ultimately levels of phenotypic heterogeneity by modulating promoter switching dynamics. In this thesis, I investigated various mechanisms by which heterogeneity in the expression of FLO 11 in S. cerevisiae could be generated and controlled. First, we show that two copies of the FLOJ1 locus in S. cerevisiae switch between a silenced and competent promoter state in a random and independent fashion, implying that the molecular event leading to the transition occurs in cis. Through further quantification of the effect of trans regulators on both the slow epigenetic transitions between a silenced and competent promoter state and the fast promoter transitions associated with conventional regulation of FLO11, we found different classes of regulators affect epigenetic, conventional, or both forms of regulation. Distributing kinetic control of epigenetic silencing and conventional gene activation offers cells flexibility in shaping the distribution of gene expression and phenotype within a population. Next, we demonstrate how multiple molecular events occurring at a gene's promoter could lead to an overall slow step in cis. At the FLO] 1 promoter, we show that at least two pathways that recruit histone deacetylases to the promoter and in vivo association between the region -1.2 kb from the ATG start site of the FLO11 ORF and the core promoter region are all required for a stable silenced state. To generate bimodal gene expression, the activator Msnlp forms an alternate looped conformation, where the core promoter associates with the non-coding RNA PWR1's promoter and terminator regions, located at -2.1 kb and -3.0 kb from the ATG start site of the FLO]1 ORF respectively. Formation of the active looped conformation is required for Msnlp's ability to stabilize the competent state without destabilizing the silenced state and generate a bimodal response. Our results support a model where multiple stochastic steps at the promoter are required to transition between the silenced and active states, leading to an overall slow step in cis. Finally, preliminary investigations of heterozygous diploids revealed possible transvection occurring at FLO] 1, where a silenced allele of FLO 11 appeared to transfer silencing factors to a desilenced FLO11 allele on the homologous chromosome. These observations suggest a new mechanism through which heterogeneity in FL011 expression could be further controlled, in addition to the molecular events at the FL011 promoter we elucidated previously. / by Leah M. Octavio. / Ph.D.

Identiferoai:union.ndltd.org:MIT/oai:dspace.mit.edu:1721.1/68433
Date January 2011
CreatorsOctavio, Leah M. (Leah Mae Manalo)
ContributorsGerald R. Fink and Narendra Maheshri., Massachusetts Institute of Technology. Computational and Systems Biology Program., Massachusetts Institute of Technology. Computational and Systems Biology Program.
PublisherMassachusetts Institute of Technology
Source SetsM.I.T. Theses and Dissertation
LanguageEnglish
Detected LanguageEnglish
TypeThesis
Format178 p., application/pdf
RightsM.I.T. theses are protected by copyright. They may be viewed from this source for any purpose, but reproduction or distribution in any format is prohibited without written permission. See provided URL for inquiries about permission., http://dspace.mit.edu/handle/1721.1/7582

Page generated in 0.0022 seconds