Microbial food web interactions in two Long Island embayments

Thesis (S.M. in Biology)--Joint Program in Biological Oceanography (Massachusetts Institute of Technology, Dept. of Biology; and the Woods Hole Oceanographic Institution), 1999. / Includes bibliographical references (leaves 23-30). / Phytoplankton mortality (herbivory) and bacterivory were examined experimentally in West Neck Bay and Coecles Harbor, Long Island, NY from April through September, 1998. Small algae (<5 [tm diameter) dominated phytoplankton communities in both ecosystems throughout the summer, and zooplankton were also small (mostly <40 tm). Generally, plankton abundances were indicative of eutrophic ecosystems. Oscillations in standing stocks and mortality of prey indicated tight coupling of growth and grazing mortality in both bays. Phytoplankton mortality rates accounted for the removal of 14% to 65% of total phytoplankton standing stocks daily, while bacterivory accounted for the removal of 14% to 88% of total bacterial standing stocks daily. Estimates of carbon consumption revealed high energy flux through the nano- and microzooplankton assemblages of these estuarine environments. / by Katie Rose Boissonneault Cellineri. / S.M.in Biology

Identiferoai:union.ndltd.org:MIT/oai:dspace.mit.edu:1721.1/85281
Date January 1999
CreatorsBoissonneault, Katie Rose, 1973-
ContributorsDavid A. Caron., Woods Hole Oceanographic Institution., Joint Program in Biological Oceanography., Massachusetts Institute of Technology. Department of Biology., Woods Hole Oceanographic Institution.
PublisherMassachusetts Institute of Technology
Source SetsM.I.T. Theses and Dissertation
LanguageEnglish
Detected LanguageEnglish
TypeThesis
Format30, [17] leaves, application/pdf
Coveragen-us-ny
RightsM.I.T. theses are protected by copyright. They may be viewed from this source for any purpose, but reproduction or distribution in any format is prohibited without written permission. See provided URL for inquiries about permission., http://dspace.mit.edu/handle/1721.1/7582

Page generated in 0.0027 seconds