Return to search

Ecological Process and the Blister Rust Epidemic: Cone Production, Cone Predation, and Seed Dispersal in Whitebark Pine (Pinus albicaulis)

Whitebark pine (Pinus albicaulis), a high elevation foundation species, is experiencing population declines throughout the northern part of its range. The introduced fungal pathogen, Cronartium ribicola (white pine blister rust), infects whitebark pine and kills cone-bearing branches and trees. Blister rust has spread nearly rangewide and damage and mortality are highest in the northwest US and southwest Canada. Mortality caused by mountain pine beetle (Dendroctonus ponderosae) population upsurges, and successional replacement and loss of regeneration opportunities from fire suppression, are also impacting some whitebark pine populations. Within this dissertation, I present three manuscripts that address the impact of whitebark pine's decline on species interactions and ecological processes within subalpine forests. Research was conducted in three ecosystems in the Rocky Mountains USA that are distinct in whitebark pine health conditions (rust infection and mortality) and abundance. In the first manuscript, I explore how the relationship between whitebark pine and Clark's Nutcracker (Nucifraga columbiana), its primary seed disperser, is being affected by whitebark's decline. Nutcrackers were less likely to use and disperse seeds from forests where cone production is below a threshold. In the second manuscript, I describe habitat use of whitebark pine forests by red squirrels (Tamiasciurus hudsonicus). Squirrel residency and impact of cone predation increased with decreasing whitebark pine abundance. The third manuscript focuses on the tree-level ecological process, predispersal cone survival, as a function of coarse scale whitebark pine abundance. Surviving trees in high mortality forests were found to have a lower rate and higher variability of cone survival, suggesting that the putative levels of rust-resistance in surviving trees of high mortality forests may not be passed on to future generations. At the ecosystem level, the Northern Divide had the highest levels of rust infection and tree mortality and lowest nutcracker interaction and regeneration levels; the Greater Yellowstone had the lowest infection and mortality levels and nutcrackers were present and dispersing seeds at all research sites in all years, while the Bitterroot Mountains were intermediate in these comparisons. These findings provide important components for developing a long-term strategy to conserve and restore whitebark pine ecosystems in the Rocky Mountains.

Identiferoai:union.ndltd.org:MONTANA/oai:etd.lib.umt.edu:etd-01042008-111653
Date06 February 2008
CreatorsMcKinney, Shawn Thomas
ContributorsDr. Carl Fiedler, Dr. Elizabeth Crone, Dr. Anna Sala, Dr. Diana Tomback, Dr. Hans Zuuring
PublisherThe University of Montana
Source SetsUniversity of Montana Missoula
LanguageEnglish
Detected LanguageEnglish
Typetext
Formatapplication/pdf
Sourcehttp://etd.lib.umt.edu/theses/available/etd-01042008-111653/
Rightsunrestricted, I hereby certify that, if appropriate, I have obtained and attached hereto a written permission statement from the owner(s) of each third party copyrighted matter to be included in my thesis, dissertation, or project report, allowing distribution as specified below. I certify that the version I submitted is the same as that approved by my advisory committee. I hereby grant to University of Montana or its agents the non-exclusive license to archive and make accessible, under the conditions specified below, my thesis, dissertation, or project report in whole or in part in all forms of media, now or hereafter known. I retain all other ownership rights to the copyright of the thesis, dissertation or project report. I also retain the right to use in future works (such as articles or books) all or part of this thesis, dissertation, or project report.

Page generated in 0.0041 seconds