Return to search

SAGE-GROUSE AND ENERGY DEVELOPMENT: INTEGRATING SCIENCE WITH CONSERVATION PLANNING TO REDUCE IMPACTS

<p>Effective conservation planning in the face of rapid land use change requires knowledge of which habitats are selected at landscape scales, where those habitats are located, and how species ultimately respond to anthropogenic disturbance. I assessed sage-grouse (Centrocercus urophasianus) large scale habitat ecology and response to energy development in the winter and nesting seasons using radio-marked individuals in the Powder River Basin, Montana and Wyoming, USA. Landscape scale percent sagebrush (Artemisia spp.) cover at 4-km2 was the strongest predictor of use by sage-grouse in winter. After controlling for vegetation and topography, the addition the density of coal-bed natural gas wells within 4 km2 improved model fit (AIC -6.66, wi = 0.965) and indicated that sage-grouse avoided energy development. Nesting analyses showed that landscape context must be considered in addition to local scale habitat features (wi = 0.96). Findings provide managers a hierarchical filter in which to manage breeding habitats. Twice the amount of nesting habitat at 3, 5 and 10-km scales surrounded active leks versus random locations. Spatially explicit nesting and wintering models predicted independent sage-grouse locations (validation R2 ≥ 0.98). I incorporated knowledge of energy impacts into a study design that tested for threshold responses at regional scales analyzing 1,344 leks in Wyoming from 1997-2007. Potential impacts were indiscernible at 1-12 wells within 32.2 km2 of a lek (~1 well / 640 ac). At higher wells densities a time-lag showed higher rates of lek inactivity and steeper declines in bird abundance 4 years after than immediately following development. I spatially prioritized core areas for breeding sage-grouse across Wyoming, Montana, Colorado, Utah and the Dakotas and assessed risk of future energy development. Findings showed that bird abundance varies by state, core areas contain a disproportionately large segment of the breeding population and that risk of development within core areas varies regionally. My analyses document behavioral and demographic responses to energy development, offer new insights into large scale ecology of greater sage-grouse and provide resource managers with practical tools to guide conservation.</p>

Identiferoai:union.ndltd.org:MONTANA/oai:etd.lib.umt.edu:etd-03262009-132629
Date28 April 2009
CreatorsDoherty, Kevin Eric
ContributorsDr. Jon Graham, Dr. Michael Mitchell, Dr. David E. Naugle, Dr. L. Scott Mills, Dr. LLoyd Queen
PublisherThe University of Montana
Source SetsUniversity of Montana Missoula
LanguageEnglish
Detected LanguageEnglish
Typetext
Formatapplication/pdf
Sourcehttp://etd.lib.umt.edu/theses/available/etd-03262009-132629/
Rightsunrestricted, I hereby certify that, if appropriate, I have obtained and attached hereto a written permission statement from the owner(s) of each third party copyrighted matter to be included in my thesis, dissertation, or project report, allowing distribution as specified below. I certify that the version I submitted is the same as that approved by my advisory committee. I hereby grant to University of Montana or its agents the non-exclusive license to archive and make accessible, under the conditions specified below, my thesis, dissertation, or project report in whole or in part in all forms of media, now or hereafter known. I retain all other ownership rights to the copyright of the thesis, dissertation or project report. I also retain the right to use in future works (such as articles or books) all or part of this thesis, dissertation, or project report.

Page generated in 0.0022 seconds