Return to search

ARBUSCULAR MYCORRHIZAL RESPONSES TO BIOCHARS IN SOILS - POTENTIAL MECHANISMS OF INTERACTION AND OBSERVED RESPONSES IN CONTROLLED ENVIRONMENTS

The following thesis is a two-part study, investigating the influences of biochar (charcoal) on arbuscular mycorrhizal fungi (AMF). The first part of this study is a critical examination and conceptual overview of the literature regarding biochar and AMF available before July 2007. In the second part, I present three experiments all designed to evaluate the influences of biochar applications on AMF abundance in primarily temperate, neutral pH soils. This course of research was selected through an exstensive review of the literature suggesting that biochar presence can strongly affect both soil microbial populations, including mycorrhizal fungi, and biogeochemistry. As both biochar and mycorrhizal associations are subject to management, and because both components are potentially important in various ecosystem services provided by soils (e.g., sustainable plant production) understanding and exploiting interactions between them could be advantageous. After reviewing the experimental evidence for such effects, four mechanisms are proposed by which biochar could influence mycorrhizal abundance and/ or functioning. These mechanisms are: a) alteration of soil physico-chemical properties; b) indirect effects on mycorrhizae through effects on other soil microbes; c) plant-fungus signaling interference and detoxification of allelochemicals; and d) provision of refugia from fungal grazers. Through this overview, a roadmap for research is provided, which is aimed at testing these mechanistic hypotheses. Using this proposed framework as a template, three experiments were designed and implemented, incorporating three different soils, five different biochars, and eight different biochar application rates. Through these experiments, it was illustrated that five different types of biochar are all capable of significantly altering soil orthophosphate availabilities, with four of these biochars not significantly affecting soil pH. Overall, our results indicate that AMF abundances were either unchanged or decreased with biochar amendment across multiple treatments. These results also indicate that biochar, depending on the nature of the feedstock, the temperature attained during pyrolysis and amounts applied can significantly alter soil properties including phosphate availability. These findings may have implications for soil management where the goal is to increase the services provided by AMF.

Identiferoai:union.ndltd.org:MONTANA/oai:etd.lib.umt.edu:etd-04162009-110852
Date20 April 2009
CreatorsWarnock, Daniel
ContributorsJames Gannon
PublisherThe University of Montana
Source SetsUniversity of Montana Missoula
LanguageEnglish
Detected LanguageEnglish
Typetext
Formatapplication/pdf
Sourcehttp://etd.lib.umt.edu/theses/available/etd-04162009-110852/
Rightsunrestricted, I hereby certify that, if appropriate, I have obtained and attached hereto a written permission statement from the owner(s) of each third party copyrighted matter to be included in my thesis, dissertation, or project report, allowing distribution as specified below. I certify that the version I submitted is the same as that approved by my advisory committee. I hereby grant to University of Montana or its agents the non-exclusive license to archive and make accessible, under the conditions specified below, my thesis, dissertation, or project report in whole or in part in all forms of media, now or hereafter known. I retain all other ownership rights to the copyright of the thesis, dissertation or project report. I also retain the right to use in future works (such as articles or books) all or part of this thesis, dissertation, or project report.

Page generated in 0.0174 seconds