Return to search

Glacier Monitoring in Ladakh and Zanskar, northwestern India

Glaciers in the Himalaya are often heavily covered with supraglacial debris, making them difficult to study with remotely-sensed imagery alone. Various methods such as band ratios can be used effectively to map clean-ice glaciers; however, a thicker layer of debris often makes it impossible to distinguish between supraglacial debris and the surrounding terrain. Previously, a morphometric approach employing an ASTER-derived digital elevation model (DEM) has been used to map glaciers in the Khumbu Himal and the Tien Shan. This project aims first to test the ability of the morphometric procedure to map small glaciers; second, to use the morphometric approach to map glaciers in Ladakh; and third, to use Landsat and ASTER data and GPS and field measurements to monitor glacier change in Ladakh over the past four decades. Field work was carried out in the summers of 2007 and 2008. For clean ice, a ratio of shortwave infrared (SWIR, 1.6-1.7 µm) and near infrared (NIR, 0.76-0.86 µm) bands from the ASTER dataset was used to distinguish snow and ice. For debris-covered glaciers, morphometric features such as slope, derived from a DEM, were combined with thermal imagery and supervised classifiers to map glacial margins. The method is promising for large glaciers, although problems occurred in the distal and lateral parts and in the forefield of the glaciers. The morphometric approach was inadequate for mapping small glaciers, due to a paucity of unique topographic features on the glaciers which can be used to distinguish them from the surrounding terrain. A multi-temporal analysis of three glaciers in Ladakh found that two of them have recededone since at least the mid-1970s, the other since at least 2000while a third glacier, Parkachik Glacier, seemed to have retreated in the 1980s, only to advance in the 1990s and early 2000s. However, from 2004-2008 it showed only negligible change making its current status difficult to determine without further monitoring. The glacier outlines derived during this project will be added to the Global Land Ice Measurements from Space (GLIMS) database. In testing the limits of the morphometric approach, the thesis has provided a valuable contribution to the present literature and knowledge-base regarding the mapping of debris-covered glaciers.

Identiferoai:union.ndltd.org:MONTANA/oai:etd.lib.umt.edu:etd-06152009-155836
Date16 June 2009
CreatorsByrne, Martin Edward
ContributorsUlrich Kamp, Anna Klene, Joel Harper, Tobias Bolch
PublisherThe University of Montana
Source SetsUniversity of Montana Missoula
LanguageEnglish
Detected LanguageEnglish
Typetext
Formatapplication/pdf
Sourcehttp://etd.lib.umt.edu/theses/available/etd-06152009-155836/
Rightsunrestricted, I hereby certify that, if appropriate, I have obtained and attached hereto a written permission statement from the owner(s) of each third party copyrighted matter to be included in my thesis, dissertation, or project report, allowing distribution as specified below. I certify that the version I submitted is the same as that approved by my advisory committee. I hereby grant to University of Montana or its agents the non-exclusive license to archive and make accessible, under the conditions specified below, my thesis, dissertation, or project report in whole or in part in all forms of media, now or hereafter known. I retain all other ownership rights to the copyright of the thesis, dissertation or project report. I also retain the right to use in future works (such as articles or books) all or part of this thesis, dissertation, or project report.

Page generated in 0.0027 seconds