Return to search

Randomness In Tree Ensemble Methods

Tree ensembles have proven to be a popular and powerful tool for predictive modeling tasks. The theory behind several of these methods (e.g. boosting) has received considerable attention. However, other tree ensemble techniques (e.g. bagging, random forests) have attracted limited theoretical treatment. Specifically, it has remained somewhat unclear as to why the simple act of randomizing the tree growing algorithm should lead to such dramatic improvements in performance. It has been suggested that a specific type of tree ensemble acts by forming a locally adaptive distance metric [Lin and Jeon, 2006]. We generalize this claim to include all tree ensembles methods and argue that this insight can help to explain the exceptional performance of tree ensemble methods. Finally, we illustrate the use of tree ensemble methods for an ecological niche modeling example involving the presence of malaria vectors in Africa.
Date15 October 2009
CreatorsElias, Joran
ContributorsJesse Johnson, Jon Graham, Solomon Harrar, Dave Patterson, Brian Steele
PublisherThe University of Montana
Source SetsUniversity of Montana Missoula
Detected LanguageEnglish
Rightsunrestricted, I hereby certify that, if appropriate, I have obtained and attached hereto a written permission statement from the owner(s) of each third party copyrighted matter to be included in my thesis, dissertation, or project report, allowing distribution as specified below. I certify that the version I submitted is the same as that approved by my advisory committee. I hereby grant to University of Montana or its agents the non-exclusive license to archive and make accessible, under the conditions specified below, my thesis, dissertation, or project report in whole or in part in all forms of media, now or hereafter known. I retain all other ownership rights to the copyright of the thesis, dissertation or project report. I also retain the right to use in future works (such as articles or books) all or part of this thesis, dissertation, or project report.

Page generated in 0.0421 seconds