Return to search

A One-Dimensional Subgrid Near-Wall Treatment for Reynolds Averaged Computational Fluid Dynamics Simulations

Prediction of the near wall region is crucial to the accuracy of turbulent flow computational fluid dynamics (CFD) simulation. However, sufficient near-wall resolution is often prohibitive for high Reynolds number flows with complex geometries, due to high memory and processing requirements. A common approach in these cases is to use wall functions to bridge the region from the first grid node to the wall. This thesis presents an alternative method that relaxes the near wall resolution requirement by solving one dimensional transport equations for velocity and turbulence across a locally defined subgrid contained within wall adjacent grid cells. The addition of the subgrid allows for wall adjacent primary grid sizes to vary arbitrarily from low-Re model sizing (y+ ~ 1) to wall function sizing without significant loss of accuracy or increase in computational cost.

Identiferoai:union.ndltd.org:MSSTATE/oai:scholarsjunction.msstate.edu:td-1217
Date13 May 2006
CreatorsMyers, Seth Hardin
PublisherScholars Junction
Source SetsMississippi State University
Detected LanguageEnglish
Typetext
Formatapplication/pdf
SourceTheses and Dissertations

Page generated in 0.0022 seconds