Return to search

Experimental Evaluation of Error bounds for the Stochastic Shortest Path Problem

A stochastic shortest path (SSP) problem is an undiscounted Markov decision process with an absorbing and zero-cost target state, where the objective is to reach the target state with minimum expected cost. This problem provides a foundation for algorithms for decision-theoretic planning and probabilistic model checking, among other applications. This thesis describes an implementation and evaluation of recently developed error bounds for SSP problems. The bounds can be used in a test for convergence of iterative dynamic programming algorithms for solving SSP problems, as well as in action elimination procedures that can accelerate convergence by excluding provably suboptimal actions that do not need to be re-evaluated each iteration. The techniques are shown to be effective for both decision-theoretic planning and probabilistic model checking.

Identiferoai:union.ndltd.org:MSSTATE/oai:scholarsjunction.msstate.edu:td-3141
Date14 December 2013
CreatorsAbdoulahi, Ibrahim
PublisherScholars Junction
Source SetsMississippi State University
Detected LanguageEnglish
Typetext
Formatapplication/pdf
SourceTheses and Dissertations

Page generated in 0.0016 seconds