Return to search

Genetic diversity among and between Rivercane, Arundinaria Gigantea, Canebrakes assessed by Microsatellite Analysis

Arundinaria gigantea, a North American bamboo that historically grew in vast canebrakes, is now considered a critical component of an endangered ecosystem. Expressing self-incompatibility, restoration efforts must ensure genetic diversity within canebrakes for viable seed production. DNA fingerprinting methods were developed using 20 simple sequence repeat (SSR) markers and two sequence-characterized amplified region (SCAR) markers. Among 18 markers able to amplify rivercane DNA via polymerase chain reaction (PCR), 10 were demonstrated to be polymorphic within rivercane. Markers could distinguish rivercane among and between canebrakes and could discern full-sibling seedlings. The mostly-infertile Mississippi canebrakes of rivercane were determined to contain 46% genetic diversity within canebrakes and an average of 1.436 effective alleles. In contrast, the fertile North Carolina canebrakes contained 99% genetic diversity within canebrakes and an average of 6.435 effective alleles. Therefore, theoretically, at least seven distinct genotypes were needed for a healthy, viable rivercane brake.

Identiferoai:union.ndltd.org:MSSTATE/oai:scholarsjunction.msstate.edu:td-3395
Date06 May 2017
CreatorsWright, Jeremi Scott
PublisherScholars Junction
Source SetsMississippi State University
Detected LanguageEnglish
Typetext
Formatapplication/pdf
SourceTheses and Dissertations

Page generated in 0.0016 seconds